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Advanced analysis CFST A new advanced method combining stability function and distributed plasticity model has been developed
Stability  function ~ Beam-column using Fortran programming language to predict the nonlinear inelastic behavior of concrete-filled steel
element

tubalar (CFST) under static loading. The advantage of this method is the ability to accurately study the
Distributed plasticity model X X X : ) X
nonlinear behavior using only one or two beam-column elements per member instead of using solid and
shell elements as traditional methods, thereby improving the model analysis time. The Generalized
Displacement Control (GDC) algorithm, capable of analyzing beyond the limit point, will be used to solve
the nonlinear equilibrium equations instead of the traditional Newton-Raphson algorithm. The element
stiffness matrix is integrated through the Gauss-Lobatto numerical integration framework, while the
nonlinear geometric effects P-A and P-8 are considered using stability functions and a corresponding
geometric matrix. The reliability and accuracy of the proposed method are verified by comparing the
analysis results with experimental data. The obtained results have demonstrated that using beam-column
elements for simulation, the proposed method still provides accurate results while significantly reducing
computational resources. Therefore, this new method holds promise as a useful tool for practical design

and analysis of statically loaded CFST structures.
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1. Introduction Steel tube

Steel tube

In recent years, concrete-filled steel tube (CFST) structures have
become increasingly popular in the construction of buildings and Cencrete
Concrete Concrete

bridges due to their high strength, durability, good ductility, and M ,L#J,_ B !

ability to absorb large amounts of energy [1-4]. CFST structures Figure 1. The typical structure of a CFST.
typically consist of steel tubes filled with high-strength or medium-
strength concrete, with typical cross-sections as shown in Figure 1,
and are often used for compression. The compressive strength of the
concrete core is significantly increased by the confinement effect from

the outer steel tubes, as shown in Figure 2. Meanwhile, the steel tube CFST

structure is restrained by its inner concrete, leading to an increase in Steel
the local buckling resistance of the steel tubes compared to \ +
v Concrete

conventional steel tubes [1], as illustrated in Figure 3. Furthermore,

the elimination of formwork in the concrete construction process

Axial strength

reduces costs and construction time [1], as shown in Figure 4.
Hollow

Therefore, to be able to understand and apply this type of structure, steel

many experimental studies have been conducted recently [5-9]. ."-.poncrcte

Although observing the behavior of CFST structures through

Y

experiments can be reliable, this method is expensive, time- Axial shortening

consuming, and not suitable for all situations. Therefore, using Figure 2. Comparion of the relationship between load-deformation of steel

numerical simulation tools would be an effective alternative for tube columns, concrete columns, and corresponding CFST columns.

studying the behavior of these structures.
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Figure 3. The failure mode of steel tube columns, concrete columns,

and corresponding CFST columns.
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Figure 4. Hybrid structural systems using CFST columns in high-rise buildings.

Until now, numerical methods used to study the behavior of
CFST structures often rely on commercial software package such as
Abaqus, Ls-dyna, and Ansys [10-13]. It can be observed that the
elements used in commercial software package to simulate CFST
structures are usually block elements and shell elements. This makes
the simulation process time-consuming, complex in many situations,
and imposes limitations on the practical design process [14,15]. To
overcome this limitation, a fiber beam-column model (fiber model)
will be developed for CFST structural analysis in this study. In this
fiber model, the cross-sections at integration points will be divided
into multiple small fibers, and the stress-strain relationship will be
clearly observed throughout the analysis process, allowing for the
observation of deformation distribution on the cross-section and along
the element. Note that advanced analysis methods need to consider
both nonlinear sources, including geometric and material nonlinearity.
For geometric nonlinearity, it can be considered using displacement
interpolation functions as in traditional finite element methods or
using stability functions [16]. Because displacement interpolation
functions are formed based on the displacement field, they cannot
accurately predict geometric nonlinear behavior P-§ when only one or
two elements are used on a member. Therefore, to obtain accurate
solutions, this method requires the use of multiple elements on a
member, leading to a decrease in computational efficiency. This
limitation can be overcome by using stability functions. This is
because stability functions allow for an accurate consideration of the
geometric nonlinear effect P-8 with only one or two elements. To the
best of the author's knowledge, this method has been developed for

nonlinear analysis of steel structures and has been shown to be
significantly more efficient than commercial software packages [16-
18]. However, there seems to be no study on the nonlinear analysis of
CFST structures using stability functions. Therefore, stability functions
will be developed in this study.

In this study, a novel advanced method combining stability
functions and distributed plasticity model will be developed using
Fortran programming language to predict the nonlinear behavior of
CFST structures under static loading. The advantage of this method is
the ability to accurately study nonlinear behavior with only one or
two beam-column elements per member instead of using traditional
block and shell elements, thereby improving the model analysis time.
The GDC algorithm with post-peak analysis capability will be used to
solve nonlinear equilibrium equations instead of the traditional
Newton-Raphson algorithm. The element stiffness matrix will be
integrated through the Gauss-Lobatto quadrature framework while
geometric nonlinear effects P-§ and P-A will be considered using
stability functions and corresponding geometric matrices. The
reliability and accuracy of the proposed method will be validated
through comparison of analysis results with experimental data. The
results have demonstrated that, with the use of beam-column elements
for simulation, the proposed method still provides accurate results
while significantly reducing computational resources. Therefore, this
new method promises to be a useful tool for practical design and

analysis of CFST structures under static loading.

2. The formulas for the proposed CFST beam-column element
2.1. Basic Assumptions

Below are the assumptions in the process of constructing the
fiber beam-column element

(1) The cross-section remains flat and perpendicular to the axis
of the element after deformation.

(2) The bond between steel and concrete is considered perfect.

(3) Large displacements and rotations are permitted, but
deformations are small.

(4) Torsional effects are not considered.

2.2. Geometric nonlinearity source due to second-order effects P-5

To study the nonlinear geometric effects due to the interaction
between axial force and bending moment of the beam-column element
P-8, this study utilized the stability function developed by Chen et al.
[19]. The main advantage of the stability function is its ability to
consider geometric nonlinear behavior P-8 with only one or two
elements on a beam-column member, thereby significantly reducing
the analysis time of the model. By considering a beam-column element
with two-way bending curvature as shown in Figure 5, the
relationship between force and displacement of that element can be

derived, as formulated by Kim et al. [20], as follows :
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AF =K,Ad )
AF =[AP AM,; AM,; AM, AM,; AT|" )
Ad=[AS AGy, A6, A6, A0, AH]T 3)
= 0 0 0 0 0]
EI EI
0 Sy= S= 0 0 0
EI EI
0 Sy~ Sy 0
K. = El EI 4
0 0 S7 S,2 0
0 0 0 5,2 5,2 0
0 0 0 o0 4]

where P is the axial force, M;, My;,

at the two ends of the element corresponding to the y and z axes; T is
vis Oyjs
the rotations of the nodes at the two ends of the element

M,;, and M, are the moments

the torsional moment; 8 is the axial deformation; 6 8,, and 0,; are
corresponding to the y and z axes; ¢ is the twist angle; G is the shear
modulus; E is the elastic modulus of the material; J is the torsional
constant of the cross-section; A is the cross-sectional area; L is the
length of the element; S, and S,, (n = y,z) are the stability functions
corresponding to the y and z axes, and they are determined by the

following equations:

m[palsin(m/pn)—n\[pn cos(m/pn)]

s = 2-2 cos(nm)—nmﬂn(nm) ifP <0 (5)
n = n@[nﬁcush(nﬁ)—sinh(nmﬂ ifP >0
2-2 cosh(m\/pp)+m\[pn sinh(m[py)
70\/pn[mpn—sin(m[pn)] P <0
s _ 2-2 cus(nﬁ)—nﬁsin(nm) (6)
2n = 7 /pnlsinh(r[pn) -7 /pr] ifP > 0

2-2 cosh(rt\/pp)+1\/pn sinh(m/py)

where p, = P/(n’El,/L%), where P is positive if the axial force is
tension and negative if the axial force is compression.

EA represents the axial stiffness of the fiber beam-column
element, while EI, and GJ represent the flexural stiffness and torsional
stiffness of that element, respectively. These values are determined

based on the following formulas:

EA =%t w, (XL, EiAi)t 7
El, = ¥y we (B, EAz} ¢ ®)
El, = Yo w CL, EAYD), ©)]
6] = $ier Gw [T (7 + ZDA, 10)

where s is the number of axial distributed integration points of
the beam-column element; m is the number of fibers in a cross-section
at an integration point; wy is the corresponding integration weight; E;
is the elastic modulus of the i™ material; A, is the area of the i™ fiber;
and y; and z; are the local coordinates of the i fiber in the cross-

section, corresponding to the z and y axes, respectively.
2.3. Nonlinear material source

To observe the gradual spread of plastic deformation across a
cross-section, this paper will utilize the fiber beam-column element
model. The basic principle of the fiber beam-column element is that a
single element will be divided into multiple segments through
integration points. At each integration point, the cross-section of that

element will be further subdivided into a matrix of fibers, each

characterized by parameters such as area Ai, local coordinates
corresponding to the centroid (y;, z;), and residual stress if considered.
Then, each fiber will be assigned a different material model, and these
models will be updated at each load increment during the analysis
process. The deformation of the cross-section is characterized by three
components: axial deformation ¢ and two curvature components %,
and , corresponding to the local y and z axes. The corresponding
internal forces include axial force N and bending moments about the
two axes M, and M,. Forces and deformations of the cross-section are

grouped into rows.

X

v ()

Figure 5. The proposed fiber beam-column element for CFST

structural analysis.

The cross-section force vector Q and the incremental force
vector on the cross-section AQ

Q=[M(x) My(x) N a1

AQ = [AM, AM, AN]T 12)

The deformation vector q and the incremental deformation
vector on the cross-section Aq

q=[:( x,x) eM)]” (13)

Aq =[Dx, Axy, Ae]” 14)
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The force on the cross-section Q at each integration point is
calculated based on the element nodal force F and the interpolation

force matrix as the expression below

AQ = B(x)AF (15)
@ 0 0 G- ¢ o
B(x)=[—5z(a) -1 ¢ 0 0 o];(=; (16)
1 0 0 0 00

where 8,(CL) and §,(lL) are lateral

displacement components along the local z and y axes. These values

the corresponding

are determined based on the following expressions

8,GL) = = gz (M [F — cos ke, 41) = ¢ + 1] + M,y [T ¢} a7)
800 = i (M [y — cosllo ) ~g 4 1] 4y, [T o]} as)

Then, the deformation of the cross-section will be determined
based on the cross-section force as follows

Aq = k! a9

in which the stiffness matrix of the cross-section is calculated

according to the following expression:
v? (=ydzi =y
-132 Eidif(-y)z; 2P 7

ksec (G zi 1 (20)
Based on the assumption that the cross-section will remain flat

and perpendicular to the element axis after deformation, the
incremental deformation vector of the axial fibers is determined
through the incremental deformation of the cross-section as follows:

Agi(x,v,2) = a;"Aq (21)
where a; is the linear geometric matrix, and this matrix is determined
by the following expression:

a={-y z 1}7(22)

After the deformation of the fibers has been determined, the
incremental stress and tangent modulus of each fiber are also updated
based on different stress-strain models. During the iteration process,
the element stiffness matrix K. and the cross-section stiffness matrix
k.. will be continuously updated after each load increment. Based on
the new tangent modulus, the centroid position of the cross-section
will also be updated in each load increment to consider the
distribution of plasticity of the cross-section. The internal forces of the
cross-section are calculated by summing up the axial forces and

bending moments of all fibers, as described in the equation below:

M, (X) —Vi
Q=M =%, 0 Ai{ Z; } =X, 01 Aa; (23)
N(x) 1
2.4. Nonlinear geometric source due to second-order effects P-§

The nonlinear geometric effect P-A due to the rotation of elements
in the frame will be described in this section. Figure 5 (c) illustrates the
relationship between force and displacement at the nodes of the beam-
column element, while Figure 5 (d) describes the sign convention of the
corresponding forces and displacements. The dynamic relationship and
equilibrium of the beam-column element can be inferred by comparing
these two figures and are expressed as follows

Af, = TTAF (24)

Ad =TAd,, (25)
AfnT ={Ar, Ar, Ar; Ar, Ars Arg Ar; Arg Arg Aryy Aryy Arg,}(26)
Ad," ={Ad, Ad, Ad; Ad, Ads Adgy Ad, Ady Ady Ady, Ady; Adyy) (27)
where Af, and Ad; are the nodal force and displacement vectors,
respectively, of a finite beam-column element; AF and Ad are the
nodal force and displacement vectors of the beam-column element,

while T is the transformation matrix and is calculated as follows:

(L0 0 0001 0 0 0 0 0

| 0 -20100 0 - 0 0 Of
L L

|00—%00000%010|

T= 1 1 (28)
|0200010—20000|
lo% 0000—%0001J
0 0 1000 0 0 -1 0 0

Through the transformation matrix from the

relationship and equilibrium, the relationship between nodal force and

dynamic

displacement vectors is determined as follows:

Afy =KyAd, (29)
where K| is the element stiffness matrix, and this matrix is calculated
according to the expression:

K, =T'K,T (30)

Equation (25) is applied for the case of a beam-column element

without the ability to rotate. However, if the element is able to rotate,

axial and shear forces will increase within the element. These

increased forces can be related to nodal displacements through the
following equation:

Af; =K Ad, (31)

where K, is the element stiffness matrix due to the rotational effects of

the frame components, and this matrix is determined as follows:

K K
Ko = [-KST K, (32)
where
[ 0 (M + M) /2 (M +M)/T2 0 0 0
(33)
(M +M,)/ 1 P/L 0 000
K, =| (M, +M,)/ 1 0 P/L 000
0 0 0 000
0 0 0 000
i 0 0 0 00 0]

By comparing equations (24) and (29) with each other, the
relationship between the force and displacement of the beam-column

element can be calculated according to the following formula:

Af, =KAd, (34)
here
Afy, = A + Af; (35)
K =K, +K, (36)
3. Constitutive model
3.1. Stress-strain relationship for structural steel

Structural steel sections can be produced through hot rolling or
cold forming processes. The relationship between stress and strain of

the steel sections in this paper is described by a three-stage model, as
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suggested by Tai et al. [21]. This material model is illustrated in

Figure 6 and equation (37). The initial stage of deformation is

assumed to be fully elastic. Then, upon reaching the yield limit, the

steel's deformation increases while stress remains constant, and finally,

the material enters the hardening stage. Similar to the behavior of

steel bars, the tensile and compressive behaviors of structural steel
sections are also assumed to be equivalent
Ee if0<|g| < ¢,

f. =4tf ife, <lgl <, (37)

+[f, + Ei(lesl — e]if e, < les] < &,

where the parameter E, represents the elastic modulus of the

steel section, f; and ¢, are the corresponding stress and strain in the

steel section, f, and &, denote the yield stress and yield strain, and f, is

the ultimate stress. It should be noted that strain hardening is chosen

as g, = 0,005 for high-strength steel and &, = 10¢, for structural steel,

and the ultimate strain is ¢, = 0,1 for high-strength steel and ¢, = 0,2

for structural steel.
3.2. Stress-strain relationship of confined concrete

The box-shaped steel structure serves to confine the lateral
expansion of the concrete core, thereby leading to a significant
improvement in both the strength and ductility of concrete in CFST

structures. In this study, the stress-strain relationship of confined

(s}
£,
fy ’ E]‘l
&y “€h ~Ey E“:
Es &y &y & g
Ehr : o -fyr
-fur

Figure 6. The stress-strain relationship of the structural steel used

in the study.

4. Nonlinear incremental-iterative solution procedure

The fundamental issue of the nonlinear analysis problem
involves solving a series of nonlinear equilibrium equations of the
structure. During the process of variable loading, the stiffness of the
structure may change, leading to fluctuations in the equilibrium path,
which can be stable or not. The Newton-Raphson method is an
iterative method that helps solve nonlinear problems quickly.
Although this method can be applied to most types of structures to
find the relationship between load and displacement, it is only suitable

within the load-bearing capacity of the structure. When the load

concrete will be modeled as shown in Figure 7, based on the research by
Mander et al. [22]. The initial stage of tension extends from O to a strain

value & within the compression zone and is represented as follows

o=l (38)

here
k =S— (39)
where o. is the compressive strength while e is the

corresponding compressive strain.
E,
r=—2%F (40)
EC—(@>
Ecc

Detailed information about the parameters E., f., €., the

strength reduction factor, and the confinement pressure causing lateral
confinement of concrete can be found in the studies by Liang [23].
Accordingly, the confined compressive strength of concrete in the steel

tube is determined as follows
foe ifeec < € < £y = 0,005
0 ={100(foe — acfoc)(0,015 — &) + @cfoe if€ur = 0,005 < &¢ < £ = 0,015 (41)
acfoc ifec > Equz = 0,015
For the concrete region under tension, the tensile stress is
assumed to increase linearly up to a value 0,6./f, with a
corresponding tensile strain increasing until concrete cracks. After

concrete cracking, the tensile stress is assumed to decrease linearly to

a value of 0.
O¢c
Pcc
G-CFCC
Ectu

Eeut

Figure 7. The stress-strain relationship of the confined concrete used

in the study.

exceeds the structure's load-bearing limit, the convergence process will
fail. To observe the equilibrium process of the structure when
exceeding the allowed load limit, an analysis with decreased load
steps must be conducted, which cannot be achieved by the traditional
Newton-Raphson method. Therefore, the GDC method developed by
Yang and colleagues [24] will be used to address nonlinear problems
with multiple load limit points and snap-back points. This method has
been widely used recently due to its effectiveness and numerical
stability. Hence, the GDC method is applied in this paper to analyze
the nonlinear behaviors of the structure, as illustrated in Figure 8.

The GDC method has three main features: (1) the ability to
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automatically adjust the loading step; (2) the capability to change the
loading direction when the load reaches a critical point; and (3)
numerical stability in the restricted region. In the j-th iteration of the
i-th load increment, the incremental form of the equilibrium equation

can be represented as follows :

K/ ,AD} = AP +R]_, (42)
P =K' ,AD] (43)
Ri_, = K;_;AD} (44)
Replacing equation (43) and equation (44) into equation (42)
AD} = ZAD} + AD} (45)

where AD} is the incremental displacement vector, AD} is the
incremental displacement vector generated by the reference load
vector P, AD} is the incremental displacement vector generated by the
unbalanced force vector R}_,,
load increment parameter.

K\, is the stiffness matrix, and 2} is the

The total displacement vector D}, the applied load vector P, and
the load factor/l} of the structure at the end of the j-th iteration of the

i-th load increment are accumulated as follows:

A=A+ 2 (46)
Pl=4AP 47)
D} = D}_, + AD} (48)

In the first iteration (j=1), the load increment parameter A} is
calculated as follows
{ = 21//1GSP[ (49)
where GSP is the generalized stiffness parameter and A}
represents the initial value of the load increment parameter, which is

calculated as follows:
AD1TAD}
Aﬁ;"lTAﬁi'

For the next iteration (j = 2), the value of the load increment

GSP = (50)

parameter A]‘: is determined as follows:

o
pi-1 AL
2= _ AD{™' ABj

} 1)

~i 4T~
AD{™' AD}

5. Verification

In this section, two numerical examples will be analyzed to
verify the accuracy and computational efficiency of the proposed
method in predicting the nonlinear elastic-plastic behavior of CFST
structures under static loading. The results obtained from the proposed
method will be compared with experimental results. By using the
established formulas for beam-column elements, a computer program
will be developed in the Fortran programming language for the

analysis process.
5.1. CFST column subjected to concentric loading

This example is conducted to verify the accuracy of the
proposed method by comparing the results from the proposed
method with the results from experiments conducted by some
authors. The configuration, dimensions, and cross-section of the

CFST column under compressive loading are illustrated in Figure 9

(a) and (b). The model and discretized cross-sections in the proposed
program are depicted in Figure 9 (c). The detailed dimensions of the
column structure and material properties used are presented in
Table 1. To perform the nonlinear analysis, the column structure is
modeled by four fiber beam-column elements, with each element
using 5 integration points. The axial force-deformation curves and
ultimate axial force between the analysis by the proposed program
and the experimental results will be used for comparison purposes.
Four CFST columns subjected to compression tested by Tomii et al.
[8], labeled as C-1, C-2, C-3, and C-4, will be analyzed and verified.
The ratio of steel tube thickness to column width, D/t, for these
columns ranges from 23,5 to 45,5. The material for these columns is
lightweight steel tubes, cold-formed and undergone annealing

process to remove residual stresses.

| Input and and initial value /111 in Equation (49) |
* ~
—’| J =1, set up parameters Ke, AD(r> Ré,P(; |
| i=1, GSP =1 calculate Af)l in Equation (43) |
v

i =2, determine GSP in Equation (50), and compute

i.{ in Equation (49)

Check GSP <0

- Yes
ﬁ* | /1 = —/-.1; . to invert the direction of the load |
v
| Calculate parameter AD in Equation (43)
!

J 22, update Ki——l in Equation (4), and determine

R’ in Equation (44)
v

| Compute HR; Il I\}-';r || 7'0.",31_)"J in Equation (43)

Next incremental step 1

Define /J' in Equation (51), AD'} in Equation (45),

and R'_; in Equation (44)

Next iteration j = 1+1

Figure 8. Nonlinear elastic-plastic analysis scheme applied to
the GDC algorithm.
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(a) Configuration and corresponding cross-section of the CFST column
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(e) Comparion of the results of specimen C-3
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(b) The discretization of the cross-section into fibers in the proposed program
600
~500
~400
A,
300
=]
=200
:é 100 -+ Experiment
—Proposed method
0 T T T T
0.000 0.005 0.010 0.015 0.020 0.025
Strain (%)
(d) Comparion of the results of specimen C-2
800
700 1 s T s sr e e e e e
_%600 b
£.500
8400
=
—300 +
%200 |
< --- Experiment
100 1 —Proposed method
0 T T T T
0.000 0.005 0.010 0.015 0.020 0.025

Strain (%)

(f) Comparion of the results of specimen C-4

Figure 9. CFST column subjected to concentric loading.

The relationship between axial force-deformation obtained from
the proposed method and from experiments is compared in Figures 9
(c) - (f). The analysis results from the proposed program closely

resemble the experimental results, with the average value of the

ultimate axial force ratio between simulation and experiment P, /P, ,

being 1,02. Therefore, it can be concluded that the proposed method

can accurately and effectively consider the nonlinear elastic-plastic

behavior of CFST columns under compressive loading.

Table 1. The ultimate axial load of the CFST column under concentric loading.

D t f, f. Pitm Pype Pupt

Column D/t Ref.
(mm) (mm) (MPa) (MPa) (kN) (kN) Putn
C-1 100 2,29 43,7 197 38,4 507 509,3 1,00
C-2 100 2,20 45,5 345 25,7 521 527,2 1,01

C-3 100 2,99 33,4 293 24,7 538 552,1 1,03 (81
C-4 100 4,25 23,5 289 23,8 680 706,9 1,04
Average 1,02
Standard deviation 0,01
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5.2. CFST beam subjected to axial loading and bending

In most cases, beam structures typically only experience the
effects of bending and shear. However, in some instances, beams may
also have to withstand additional influences from axial forces due to
neighboring structures such as bracing frames. In such cases, it is
necessary to study the flexural-compressive behavior of beams. The
configuration and cross-section of the CFST beam under flexural-
compressive loading are simultaneously illustrated in Figure 10 (a).
This beam structure has been experimented on by Tomii et al. [8], and
will be utilized to verify the accuracy of the proposed program. The
model and discretization of the cross-section in the proposed program
are presented in Figure 10 (b). The detailed dimensions and material
properties of four experimental beam specimens, labeled as D-1, D-2,
D-3, and D-4, are compiled in Table 2, where the ratio between the
height and the thickness of the steel box, D/t, ranges from 23,5 to
45,5. The load is applied to the beam structure through two stages. In

the first stage, an axial force N is applied and it is continuously

maintained in the subsequent stage. Then, a bending moment is
applied gradually by incrementing the vertical force P. Therefore, the
actual moment at the mid-span of the beam is the sum of the moment
due to the vertical load P and an additional moment caused by the
axial force N and the sway. The influence of local instability
phenomena will be examined for the steel tubes in all specimens
except for specimen D-4.

The moment-curvature curves analyzed by the proposed
program and from experiments are compared in Figures 10 (b) - (e).
Despite the significant increase in axial force N, the flexural capacity
of the CFST beam does not decrease significantly. The results from the
proposed program closely match the experimental results. The ratio of
ultimate flexural strength between simulation and experiment M, /
M, is 1,02, with a standard deviation of 0,03, as summarized in
Table 2. This demonstrates that the proposed method can accurately
analyze the nonlinear behavior of CFST beams under flexural-

compressive loading.

y

fiber i

steel

concrete

D

I

|
mi,q

fiberz\‘ H

concrete
fiber

(a) Configuration, cross-section of the beam, and the discretization of the cross-section into fibers in the proposed program
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<
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-
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(b) Comparion of the results of specimen D-1
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Figure 10. CFST beam under axial loading and bending.

Table 2. The ultimate flexural strength of the CFST beam under flexural-compressive loading.

Beam P ‘ D/t b Fe N Vo Mo Mupe Ref.
(mm) (mm) (MPa) (MPa) (kN) (kN.m) (kN.m) My tn
D-1 100 2,29 43,7 197 28,8 77,7 10,4 10,4 1,00
D-2 100 2,29 43,7 197 45,9 194,3 11,4 11,3 0,99

D-3 100 2,29 43,7 197 44,0 335,8 8,4 9,0 1,07 l
D-4 100 2,27 44,1 310 25,9 46,8 12,6 12,7 1,01
Average 1,02
Standard deviation 0,03

6. Case studies

In this section, a composite frame structure using CFST columns
subjected to axial and lateral loads in a cyclic form will be studied to
verify the practical applicability of the proposed method in structural
with

connections subjected to compressive and cyclic lateral loads, was

analysis practice. The composite frame structure, rigid
experimented on by Han et al. [25] and will be utilized to verify the
accuracy and analytical capability of the proposed method. The
configuration of the SF-22 frame in Han's experimental series [25] and
the discretization of the cross-section are illustrated in Figure 11 (a).
The column structure is fabricated from square hollow steel sections
filled with concrete with a width of 140 mm and a steel thickness of 4
mm. I-shaped steel, with dimensions as shown in Figure 11 (a), is used
for the horizontal beams. For the steel box structure, the yield strength
and ultimate strength of the steel material are f,; = 361,0 N/mm? and
f,, = 433,8 N/mm? and the modulus of elasticity E = 2,062x10°
MPa. Meanwhile, the yield strength and ultimate strength of the I-

shaped steel are f; = 361,6 N/mm? and f,; = 495,5 N/mm? and the

modulus of elasticity E = 2,042x10° MPa. The compressive strength of
the cubic concrete sample is f, = 56,2 MPa and will be converted to
cylindrical compressive strength. The load will be applied to the frame
through two stages. In the first stage, a compressive force N = 375,0
kN will be applied to the frame at the two upper ends of the column,
and this load will be maintained throughout the subsequent lateral
loading P process. In the next stage, the lateral load P will be applied
at the top of the column and gradually increased.

The curves between lateral load P and corresponding lateral
displacement u obtained from analysis by the proposed method and
experiment are compared in Figure 11 (b). From Figure 11 (b), it can
be observed that the analysis results closely match the experiment in
both the early stage, peak stage, and subsequent nonlinear stage. The
ultimate lateral load from the proposed method is P,, = 148,2 kN,
while the corresponding value from the experiment is P,,, = 154,1
kN, with a difference of less than 3,9%. Therefore, it can be concluded
that the proposed program is capable of reliably and accurately
analyzing the nonlinear behavior of CFST frame structures using fiber

beam-column elements.
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Figure 11. Composite portal frame subjected to lateral loads.

7. Conclusions

A new advanced method integrating stability functions and
distributed plasticity models into fiber beam-column elements has
been successfully developed using Fortran programming language to
predict the nonlinear elastic-plastic behavior of CFST structures under
static loading. The main results obtained are as follows

(1) The proposed method demonstrates the capability to
accurately and efficiently analyze the nonlinear inelastic behavior of
CFST structures under static loading using beam-column elements. The
analysis results obtained from the proposed program closely resemble
both CFST column

under flexural-compressive

results for structures under
CFST beam

loading, and large-sized composite CFST frames. Therefore, the newly

experimental
compression, structures
proposed method holds promise to provide a new useful tool for
practical design and analysis of CFST structures.

(2) Solely utilizing beam-column elements, the proposed
method still provides analysis results similar to experiments. This
demonstrates the effectiveness of the proposed program in terms of
computational resource efficiency compared to other commercial

software, as these typically utilize solid and shell elements.
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