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Δ and P δ are considered using stability functions and a corresponding 

 

In recent years, concrete filled steel tube (CFST) structures have 
become increasingly popular in the construction of buildings and 
bridges due to their high strength, durability, good ductility, and 
ability to absorb large amounts of energy [1 4]. 

 as shown in Figure 4. 
Therefore, to be able to understand and apply this type of structure, 
many experimental studies have been conducted recently [5 9]. 
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Until now, numerical methods used to study the behavior of 
CFST structures often rely on commercial software package such as 
Abaqus, Ls dyna, and Ansys [10 13]. 

 [16]. Because displacement interpolation 
functions are formed based on the displacement field, they cannot 
accurately predict geometric nonlinear behavior P δ when only one or 
two elements are used on a member. Therefore, to obtain accurate 
solutions, this method requires the use of multiple elements on a 
member, leading to a decrease in computational efficiency. This 
limitation can be overcome by using stability functions. This is 
because stability functions allow for an accurate consideration of the 
geometric nonlinear effect P δ with only one or two elements. To the 
best of the author's knowledge, this method has been developed for 

nonlinear analysis of steel structures and has been shown to be 
significantly more efficient than commercial software packages [16
18]. However, there seems to be no study on the nonlinear analysis of 
CFST structures using stability functions. Therefore, stability functions 
will be developed in this study.

In this study, a  advanced method combining stability 
functions and distributed plasticity model will be developed using 
Fortran programming language to predict the nonlinear behavior of 
CFST structures under static loading. The advantage of this method is 
the ability to accurately study nonlinear behavior with only one or 
two beam column elements per member instead of using traditional 
block and shell elements, thereby improving the model analysis time. 
The GDC algorithm with post peak analysis capability will be used to 
solve nonlinear equilibrium equations instead of the traditional 
Newton Raphson algorithm. The element stiffness matrix will be 
integrated through the Gauss Lobatto quadrature framework while 
geometric nonlinear effects P δ and P Δ will be considered using 
stability functions and corresponding geometric matrices. The 
reliability and accuracy of the proposed method will be validated 
through comparison of analysis results with experimental data. The 
results have demonstrated that, with the use of beam column elements 
for simulation, the proposed method still provides accurate results 
while significantly reducing computational resources. Therefore, this 
new method promises to be a useful tool for practical design and 
analysis of CFST structures under static loading.

 
 

Below are the assumptions in the process of constructing the 
fiber beam column element

(1) The cross section remains flat and perpendicular to the axis 
of the element after deformation.

(2) The bond between steel and concrete is considered perfect.
(3) Large displacements and rotations are permitted, but 

deformations are small.
(4) Torsional effects are not considered.

 

the

δ, this study utilized the stability function developed by Chen et al. 

δ with only one or two 
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ΔF = K𝑒𝑒Δ𝑑𝑑                                             (1)
Δ𝐹𝐹 = [Δ𝑃𝑃 Δ𝑀𝑀𝑦𝑦𝑦𝑦 Δ𝑀𝑀𝑦𝑦𝑦𝑦 Δ𝑀𝑀𝑧𝑧𝑦𝑦 Δ𝑀𝑀𝑧𝑧𝑦𝑦 Δ𝑇𝑇]𝑇𝑇 (2)
Δ𝑑𝑑 = [Δ𝛿𝛿 Δ𝜃𝜃𝑦𝑦𝑦𝑦 Δ𝜃𝜃𝑦𝑦𝑦𝑦 Δ𝜃𝜃𝑧𝑧𝑦𝑦 Δ𝜃𝜃𝑧𝑧𝑦𝑦 Δ𝜙𝜙]𝑇𝑇 (3)

𝐾𝐾𝑒𝑒 =

[
 
 
 
 
 
 
 
 
 
𝐸𝐸𝐸𝐸
𝐿𝐿 0 0 0 0 0
0 𝑆𝑆𝑦𝑦𝑦𝑦

𝐸𝐸𝐸𝐸
𝐿𝐿 𝑆𝑆𝑦𝑦𝑦𝑦

𝐸𝐸𝐸𝐸
𝐿𝐿 0 0 0

0 𝑆𝑆𝑦𝑦𝑦𝑦
𝐸𝐸𝐸𝐸
𝐿𝐿 𝑆𝑆𝑦𝑦𝑦𝑦

𝐸𝐸𝐸𝐸
𝐿𝐿 0 0 0

0 0 0 𝑆𝑆𝑦𝑦𝑧𝑧
𝐸𝐸𝐸𝐸
𝐿𝐿 𝑆𝑆𝑦𝑦𝑧𝑧

𝐸𝐸𝐸𝐸
𝐿𝐿 0

0 0 0 𝑆𝑆𝑦𝑦𝑧𝑧
𝐸𝐸𝐸𝐸
𝐿𝐿 𝑆𝑆𝑦𝑦𝑧𝑧

𝐸𝐸𝐸𝐸
𝐿𝐿 0

0 0 0 0 0 𝐺𝐺𝐺𝐺
𝐿𝐿 ]
 
 
 
 
 
 
 
 
 

                     (4)

the torsional moment; δ is the axial deformation; θ , θ , θ , and θ

φ

:

𝑆𝑆1𝑛𝑛 = {
𝜋𝜋√𝜌𝜌𝑛𝑛[𝑠𝑠𝑦𝑦𝑛𝑛(𝜋𝜋√𝜌𝜌𝑛𝑛)−𝜋𝜋√𝜌𝜌𝑛𝑛 𝑐𝑐𝑐𝑐𝑠𝑠(𝜋𝜋√𝜌𝜌𝑛𝑛)]
2−2𝑐𝑐𝑐𝑐𝑠𝑠(𝜋𝜋√𝜌𝜌𝑛𝑛)−𝜋𝜋√𝜌𝜌𝑛𝑛 𝑠𝑠𝑦𝑦𝑛𝑛(𝜋𝜋√𝜌𝜌𝑛𝑛) if𝑃𝑃 < 0

𝜋𝜋√𝜌𝜌𝑛𝑛[𝜋𝜋√𝜌𝜌𝑛𝑛 𝑐𝑐𝑐𝑐𝑠𝑠ℎ(𝜋𝜋√𝜌𝜌𝑛𝑛)−𝑠𝑠𝑦𝑦𝑛𝑛ℎ(𝜋𝜋√𝜌𝜌𝑛𝑛)]
2−2𝑐𝑐𝑐𝑐𝑠𝑠ℎ(𝜋𝜋√𝜌𝜌𝑛𝑛)+𝜋𝜋√𝜌𝜌𝑛𝑛 𝑠𝑠𝑦𝑦𝑛𝑛ℎ(𝜋𝜋√𝜌𝜌𝑛𝑛) if𝑃𝑃 > 0

(5)

𝑆𝑆2𝑛𝑛 = {
𝜋𝜋√𝜌𝜌𝑛𝑛[𝜋𝜋√𝜌𝜌𝑛𝑛−𝑠𝑠𝑦𝑦𝑛𝑛(𝜋𝜋√𝜌𝜌𝑛𝑛)]

2−2𝑐𝑐𝑐𝑐𝑠𝑠(𝜋𝜋√𝜌𝜌𝑛𝑛)−𝜋𝜋√𝜌𝜌𝑛𝑛 𝑠𝑠𝑦𝑦𝑛𝑛(𝜋𝜋√𝜌𝜌𝑛𝑛) if𝑃𝑃 < 0
𝜋𝜋√𝜌𝜌𝑛𝑛[𝑠𝑠𝑦𝑦𝑛𝑛ℎ(𝜋𝜋√𝜌𝜌𝑛𝑛)−𝜋𝜋√𝜌𝜌𝑛𝑛]

2−2𝑐𝑐𝑐𝑐𝑠𝑠ℎ(𝜋𝜋√𝜌𝜌𝑛𝑛)+𝜋𝜋√𝜌𝜌𝑛𝑛 𝑠𝑠𝑦𝑦𝑛𝑛ℎ(𝜋𝜋√𝜌𝜌𝑛𝑛) if𝑃𝑃 > 0
(6)

where   where P is positive if the axial force is 
tension and negative if the axial force is compression.

EA represents the axial stiffness of the fiber beam column 
element, while EIn and GJ represent the flexural stiffness and torsional 
stiffness of that element, respectively. These values are determined 
based on the following formulas:

𝐸𝐸𝐸𝐸 = ∑ 𝑤𝑤𝑡𝑡(∑ 𝐸𝐸𝑦𝑦𝐸𝐸𝑦𝑦
𝑚𝑚
𝑦𝑦=1 )𝑠𝑠

𝑡𝑡=1 𝑡𝑡 (7)
𝐸𝐸𝐼𝐼𝑦𝑦 = ∑ 𝑤𝑤𝑡𝑡(∑ 𝐸𝐸𝑦𝑦𝐸𝐸𝑦𝑦𝑧𝑧𝑦𝑦

2𝑚𝑚
𝑦𝑦=1 )𝑠𝑠

𝑡𝑡=1 𝑡𝑡 (8)
𝐸𝐸𝐼𝐼𝑧𝑧 = ∑ 𝑤𝑤𝑡𝑡(∑ 𝐸𝐸𝑦𝑦𝐸𝐸𝑦𝑦𝑦𝑦𝑦𝑦

2𝑚𝑚
𝑦𝑦=1 )𝑠𝑠

𝑡𝑡=1 𝑡𝑡                               (9)
𝐺𝐺𝐺𝐺 = ∑ 𝐺𝐺𝑤𝑤𝑡𝑡[∑ (𝑦𝑦𝑦𝑦

2 + 𝑧𝑧𝑦𝑦
2)𝐸𝐸𝑦𝑦

𝑚𝑚
𝑦𝑦=1 ]𝑠𝑠

𝑡𝑡=1 𝑡𝑡                       (10)
where s is the number of axial distributed integration points of 

the beam column element; m is the number of fibers in a cross section 
at an integration point; wk is the corresponding integration weight; Ei 
is the elastic modulus of the ith material; Ai is the area of the ith fiber; 
and yi and zi are the local coordinates of the ith fiber in the cross
section, corresponding to the z and y axes, respectively.

 

ε and two curvature components χ
and χ

The cross section force vector Q and the incremental force 
vector on the cross section ΔQ

𝑄𝑄 = [𝑀𝑀𝑧𝑧(𝑥𝑥) 𝑀𝑀𝑦𝑦(𝑥𝑥) 𝑁𝑁(𝑥𝑥)]𝑇𝑇 (11)
Δ𝑄𝑄 = [Δ𝑀𝑀𝑧𝑧 Δ𝑀𝑀𝑦𝑦 Δ𝑁𝑁]𝑇𝑇 (12)

The deformation vector q and the incremental deformation 
vector on the cross section Δq

𝑞𝑞 = [𝜒𝜒𝑧𝑧(𝑥𝑥) 𝜒𝜒𝑦𝑦(𝑥𝑥) 𝜀𝜀(𝑥𝑥)]𝑇𝑇 (13)
Δ𝑞𝑞 = [Δ𝜒𝜒𝑧𝑧 Δ𝜒𝜒𝑦𝑦 Δ𝜀𝜀]𝑇𝑇 (14)
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𝐸𝐸𝐸𝐸
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𝐸𝐸𝐸𝐸
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𝐸𝐸𝐸𝐸
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𝑡𝑡=1 𝑡𝑡 (8)
𝐸𝐸𝐼𝐼𝑧𝑧 = ∑ 𝑤𝑤𝑡𝑡(∑ 𝐸𝐸𝑦𝑦𝐸𝐸𝑦𝑦𝑦𝑦𝑦𝑦
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the beam column element; m is the number of fibers in a cross section 
at an integration point; wk is the corresponding integration weight; Ei 
is the elastic modulus of the ith material; Ai is the area of the ith fiber; 
and yi and zi are the local coordinates of the ith fiber in the cross
section, corresponding to the z and y axes, respectively.

 

ε and two curvature components χ
and χ

The cross section force vector Q and the incremental force 
vector on the cross section ΔQ
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The force on the cross section Q at each integration point is 
calculated based on the element nodal force F and the interpolation 
force matrix as the expression below

ΔQ = B(𝑥𝑥)Δ𝐹𝐹                                         (15)
𝐵𝐵(𝑥𝑥) = [

𝛿𝛿𝑦𝑦(𝜁𝜁𝜁𝜁) 0 0 (𝜁𝜁 − 1) 𝜁𝜁 0
−𝛿𝛿𝑧𝑧(𝜁𝜁𝜁𝜁) (𝜁𝜁 − 1) 𝜁𝜁 0 0 0

1 0 0 0 0 0
] ;  𝜁𝜁 = 𝑥𝑥

𝐿𝐿                 (16)

where δy(ζL) and δz(ζL) are the corresponding lateral 
displacement components along the local z and y axes. These values 
are determined based on the following expressions

𝛿𝛿𝑦𝑦(𝜁𝜁𝜁𝜁) = − 1
𝐸𝐸𝐼𝐼𝑧𝑧𝑘𝑘𝑧𝑧

2 {𝑀𝑀𝑧𝑧𝑧𝑧 [
𝑠𝑠𝑧𝑧𝑠𝑠(𝑘𝑘𝑧𝑧𝜁𝜁𝐿𝐿)
𝑡𝑡𝑡𝑡𝑠𝑠(𝑘𝑘𝑧𝑧𝐿𝐿) − 𝑐𝑐𝑐𝑐𝑐𝑐(𝑘𝑘𝑧𝑧𝜁𝜁𝜁𝜁) − 𝜁𝜁 + 1] + 𝑀𝑀𝑧𝑧𝑗𝑗 [𝑠𝑠𝑧𝑧𝑠𝑠(𝑘𝑘𝑧𝑧𝜁𝜁𝐿𝐿)

𝑠𝑠𝑧𝑧𝑠𝑠(𝑘𝑘𝑧𝑧𝐿𝐿) − 𝜁𝜁]} (17)
𝛿𝛿𝑧𝑧(𝜁𝜁𝜁𝜁) = 1

𝐸𝐸𝐼𝐼𝑦𝑦𝑘𝑘𝑦𝑦
2 {𝑀𝑀𝑦𝑦𝑧𝑧 [

𝑠𝑠𝑧𝑧𝑠𝑠(𝑘𝑘𝑦𝑦𝜁𝜁𝐿𝐿)
𝑡𝑡𝑡𝑡𝑠𝑠(𝑘𝑘𝑦𝑦𝐿𝐿) − 𝑐𝑐𝑐𝑐𝑐𝑐(𝑘𝑘𝑦𝑦𝜁𝜁𝜁𝜁) − 𝜁𝜁 + 1] + 𝑀𝑀𝑦𝑦𝑗𝑗 [𝑠𝑠𝑧𝑧𝑠𝑠(𝑘𝑘𝑦𝑦𝜁𝜁𝐿𝐿)

𝑠𝑠𝑧𝑧𝑠𝑠(𝑘𝑘𝑦𝑦𝐿𝐿) − 𝜁𝜁]}        (18)

Δq =  k𝑠𝑠𝑠𝑠𝑠𝑠
1𝑄𝑄                                           (19)

𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠

−1 ∑ 𝐸𝐸𝑖𝑖𝐴𝐴𝑖𝑖
𝑚𝑚
𝑖𝑖=1 [

𝑦𝑦𝑖𝑖
2 (−𝑦𝑦𝑖𝑖)𝑧𝑧𝑖𝑖 (−𝑦𝑦𝑖𝑖)

(−𝑦𝑦𝑖𝑖)𝑧𝑧𝑖𝑖 𝑧𝑧𝑖𝑖
2 𝑧𝑧𝑖𝑖

(−𝑦𝑦𝑖𝑖) 𝑧𝑧𝑖𝑖 1
]

                              (20)
Based on the assumption that the cross section will remain flat 

and perpendicular to the element axis after deformation, the 
incremental deformation vector of the axial fibers is determined 
through the incremental deformation of the cross section as follows:

Δ𝜀𝜀𝑧𝑧(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝑎𝑎𝑧𝑧
𝑇𝑇Δ𝑞𝑞                                     (21)

:
𝑎𝑎𝑧𝑧 = {−𝑦𝑦𝑧𝑧 𝑧𝑧𝑧𝑧 1}𝑇𝑇 (22)

After the deformation of the fibers has been determined, the 
incremental stress and tangent modulus of each fiber are also updated 
based on different stress strain models. During the iteration process, 
the element stiffness matrix Ke and the cross section stiffness matrix 
ksec will be continuously updated after each load increment. Based on 
the new tangent modulus, the centroid position of the cross section 
will also be updated in each load increment to consider the 
distribution of plasticity of the cross section. The internal forces of the 
cross section are calculated by summing up the axial forces and 
bending moments of all fibers, as described in the equation below:

𝑄𝑄𝑟𝑟 = {
𝑀𝑀𝑧𝑧(𝑥𝑥)
𝑀𝑀𝑦𝑦(𝑥𝑥)
𝑁𝑁(𝑥𝑥)

} = ∑ 𝜎𝜎𝑧𝑧
𝑚𝑚
𝑧𝑧=1 𝐴𝐴𝑧𝑧 {

−𝑦𝑦𝑧𝑧
𝑧𝑧𝑧𝑧
1

} = ∑ 𝜎𝜎𝑧𝑧
𝑚𝑚
𝑧𝑧=1 𝐴𝐴𝑧𝑧𝑎𝑎𝑧𝑧 (23)

 δ

The nonlinear geometric effect P Δ due to the rotation of elements 
in the frame will be described in this section. Figure 5 (c) illustrates the 
relationship between force and displacement at the nodes of the beam
column element, while Figure 5 (d) describes the sign convention of the 
corresponding forces and displacements. The dynamic relationship and 
equilibrium of the beam column element can be inferred by comparing 
these two figures and are expressed as follows

Δ𝑓𝑓𝑠𝑠 = T𝑇𝑇Δ𝐹𝐹 (24)

Δd = TΔ𝑑𝑑𝐿𝐿 (25)
Δ𝑓𝑓𝑠𝑠𝑇𝑇 = {Δ𝑟𝑟1 Δ𝑟𝑟2 Δ𝑟𝑟3 Δ𝑟𝑟4 Δ𝑟𝑟5 Δ𝑟𝑟6 Δ𝑟𝑟7 Δ𝑟𝑟8 Δ𝑟𝑟9 Δ𝑟𝑟10 Δ𝑟𝑟11 Δ𝑟𝑟12} (26)
Δ𝑑𝑑𝐿𝐿

𝑇𝑇 = {Δ𝑑𝑑1 Δ𝑑𝑑2 Δ𝑑𝑑3 Δ𝑑𝑑4 Δ𝑑𝑑5 Δ𝑑𝑑6 Δ𝑑𝑑7 Δ𝑑𝑑8 Δ𝑑𝑑9 Δ𝑑𝑑10 Δ𝑑𝑑11 Δ𝑑𝑑12} (27)
here Δ and Δ

column element; Δ and Δ

𝑇𝑇 =

[
 
 
 
 
 
 
 −1 0 0 0 0 0 1 0 0 0 0 0

0 0 − 1
𝐿𝐿 0 1 0 0 0 1

𝐿𝐿 0 0 0
0 0 − 1

𝐿𝐿 0 0 0 0 0 1
𝐿𝐿 0 1 0

0 1
𝐿𝐿 0 0 0 1 0 − 1

𝐿𝐿 0 0 0 0
0 1

𝐿𝐿 0 0 0 0 0 − 1
𝐿𝐿 0 0 0 1

0 0 0 1 0 0 0 0 0 −1 0 0]
 
 
 
 
 
 
 

(28)

Through the transformation matrix from the dynamic 
relationship and equilibrium, the relationship between nodal force and 
displacement vectors is determined as follows:

Δ𝑓𝑓𝑠𝑠 = K𝑠𝑠Δd𝐿𝐿                                             (29)

𝐾𝐾𝑠𝑠 = T𝑇𝑇𝐾𝐾𝑠𝑠𝑇𝑇                                          (30)
Equation (25) is applied for the case of a beam column element 

without the ability to rotate. However, if the element is able to rotate, 
axial and shear forces will increase within the element. These 
increased forces can be related to nodal displacements through the 
following equation:

Δ𝑓𝑓𝑠𝑠 = K𝑔𝑔Δ𝑑𝑑𝐿𝐿                                          (31)

𝐾𝐾𝑔𝑔 = [ 𝐾𝐾𝑠𝑠 K𝑠𝑠
K𝑠𝑠

𝑇𝑇 𝐾𝐾𝑠𝑠
] (32)

( ) ( )
( )
( )

2 2

2

2

0 / L / L 0 0 0

/ L / 0 0 0 0

/ L 0 / 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

K

zi zj yi yj

zi zj

yi yjs

M M M M

M M P L

M M P L

 
 
 
 
 
 
 
 
 
 
  

+ +

+

+=

(33)

By comparing equations (24) and (29) with each other, the 
relationship between the force and displacement of the beam column 
element can be calculated according to the following formula:

Δ𝑓𝑓𝐿𝐿 = K Δ𝑑𝑑𝐿𝐿                                         (34)
here

Δ𝑓𝑓𝐿𝐿 = Δ𝑓𝑓𝑠𝑠 + Δ𝑓𝑓𝑠𝑠                                     (35)
𝐾𝐾 =  𝐾𝐾𝑠𝑠 + 𝐾𝐾𝑔𝑔 (36)

 
 



JOMC 28

Journal of Materials and Construction Vol 14 No.01 (2024)

 

 

𝑓𝑓𝑠𝑠 = {
𝐸𝐸𝑠𝑠𝜀𝜀𝑠𝑠 𝑖𝑖𝑓𝑓0 ≤ |𝜀𝜀𝑠𝑠| ≤ 𝜀𝜀𝑦𝑦
±𝑓𝑓𝑦𝑦 𝑖𝑖𝑓𝑓𝜀𝜀𝑦𝑦 < |𝜀𝜀𝑠𝑠| ≤ 𝜀𝜀ℎ
±[𝑓𝑓𝑦𝑦 + 𝐸𝐸ℎ(|𝜀𝜀𝑠𝑠| − 𝜀𝜀ℎ)]𝑖𝑖𝑓𝑓𝜀𝜀ℎ < |𝜀𝜀𝑠𝑠| ≤ 𝜀𝜀𝑢𝑢

              (37)

ε
ε

ε ε ε
ε ε

 

ε
𝜎𝜎𝑐𝑐 = 𝑓𝑓𝑐𝑐𝑐𝑐' 𝑘𝑘𝑘𝑘

𝑘𝑘−1+𝑘𝑘𝑟𝑟                                       (38)

𝑘𝑘 = 𝜀𝜀𝑐𝑐
𝜀𝜀𝑐𝑐𝑐𝑐'                                             (39)

where σ ε

𝑟𝑟 = 𝐸𝐸𝑐𝑐

𝐸𝐸𝑐𝑐−(𝑓𝑓𝑐𝑐𝑐𝑐'

𝜀𝜀𝑐𝑐𝑐𝑐' )
                                    (40)

ε

𝜎𝜎𝑐𝑐 = {
𝑓𝑓𝑐𝑐𝑐𝑐

'     𝑖𝑖𝑓𝑓𝜀𝜀𝑐𝑐𝑐𝑐
' ≤ 𝜀𝜀𝑐𝑐 ≤ 𝜀𝜀𝑐𝑐𝑢𝑢1 = 0,005

100(𝑓𝑓𝑐𝑐𝑐𝑐
' − 𝛼𝛼𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐

' )(0,015 − 𝜀𝜀𝑐𝑐) + 𝛼𝛼𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐
'   𝑖𝑖𝑓𝑓𝜀𝜀𝑐𝑐𝑢𝑢1 = 0,005 < 𝜀𝜀𝑐𝑐 ≤ 𝜀𝜀𝑐𝑐𝑢𝑢2 = 0,015

𝛼𝛼𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐
'     𝑖𝑖𝑓𝑓𝜀𝜀𝑐𝑐 > 𝜀𝜀𝑐𝑐𝑢𝑢2 = 0,015

   (41)

0,6√𝑓𝑓𝑐𝑐𝑐𝑐'
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              (37)

ε
ε

ε ε ε
ε ε

 

ε
𝜎𝜎𝑐𝑐 = 𝑓𝑓𝑐𝑐𝑐𝑐' 𝑘𝑘𝑘𝑘

𝑘𝑘−1+𝑘𝑘𝑟𝑟                                       (38)

𝑘𝑘 = 𝜀𝜀𝑐𝑐
𝜀𝜀𝑐𝑐𝑐𝑐'                                             (39)

where σ ε

𝑟𝑟 = 𝐸𝐸𝑐𝑐

𝐸𝐸𝑐𝑐−(𝑓𝑓𝑐𝑐𝑐𝑐'

𝜀𝜀𝑐𝑐𝑐𝑐' )
                                    (40)

ε

𝜎𝜎𝑐𝑐 = {
𝑓𝑓𝑐𝑐𝑐𝑐

'     𝑖𝑖𝑓𝑓𝜀𝜀𝑐𝑐𝑐𝑐
' ≤ 𝜀𝜀𝑐𝑐 ≤ 𝜀𝜀𝑐𝑐𝑢𝑢1 = 0,005

100(𝑓𝑓𝑐𝑐𝑐𝑐
' − 𝛼𝛼𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐

' )(0,015 − 𝜀𝜀𝑐𝑐) + 𝛼𝛼𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐
'   𝑖𝑖𝑓𝑓𝜀𝜀𝑐𝑐𝑢𝑢1 = 0,005 < 𝜀𝜀𝑐𝑐 ≤ 𝜀𝜀𝑐𝑐𝑢𝑢2 = 0,015

𝛼𝛼𝑐𝑐𝑓𝑓𝑐𝑐𝑐𝑐
'     𝑖𝑖𝑓𝑓𝜀𝜀𝑐𝑐 > 𝜀𝜀𝑐𝑐𝑢𝑢2 = 0,015

   (41)

0,6√𝑓𝑓𝑐𝑐𝑐𝑐'

 

 

 

𝐾𝐾𝑗𝑗−1𝑖𝑖 Δ𝐷𝐷𝑗𝑗𝑖𝑖 = 𝜆𝜆𝑗𝑗𝑖𝑖�̂�𝑃 + 𝑅𝑅𝑗𝑗−1𝑖𝑖                          (42)
�̂�𝑃 = 𝐾𝐾𝑗𝑗−1𝑖𝑖 Δ�̂�𝐷𝑗𝑗𝑖𝑖                                  (43)
𝑅𝑅𝑗𝑗−1𝑖𝑖 = 𝐾𝐾𝑗𝑗−1𝑖𝑖 Δ�̄�𝐷𝑗𝑗𝑖𝑖                               (44)

Δ𝐷𝐷𝑗𝑗𝑖𝑖 = 𝜆𝜆𝑗𝑗𝑖𝑖Δ�̂�𝐷𝑗𝑗𝑖𝑖 + Δ�̄�𝐷𝑗𝑗𝑖𝑖                           (45)
Δ𝐷𝐷𝑗𝑗𝑖𝑖 Δ�̂�𝐷𝑗𝑗𝑖𝑖

�̂�𝑃 Δ�̄�𝐷𝑗𝑗𝑖𝑖

𝑅𝑅𝑗𝑗−1𝑖𝑖 𝐾𝐾𝑗𝑗−1𝑖𝑖 𝜆𝜆𝑗𝑗𝑖𝑖

𝐷𝐷𝑗𝑗𝑖𝑖 �̂�𝑃
Λ𝑗𝑗𝑖𝑖

Λ𝑗𝑗𝑖𝑖 = Λ𝑗𝑗−1𝑖𝑖 + 𝜆𝜆𝑗𝑗𝑖𝑖                                    (46)
𝑃𝑃𝑗𝑗𝑖𝑖 = Λ𝑗𝑗𝑖𝑖�̂�𝑃                                         (47)

𝐷𝐷𝑗𝑗𝑖𝑖 = 𝐷𝐷𝑗𝑗−1𝑖𝑖 + Δ𝐷𝐷𝑗𝑗𝑖𝑖                                  (48)
𝜆𝜆𝑗𝑗𝑖𝑖

𝜆𝜆1𝑖𝑖 = 𝜆𝜆11√|𝐺𝐺𝐺𝐺𝑃𝑃| (49)
𝐺𝐺𝐺𝐺𝑃𝑃 𝜆𝜆11

𝐺𝐺𝐺𝐺𝑃𝑃 = Δ�̂�𝐷11
𝑇𝑇Δ�̂�𝐷11

Δ�̂�𝐷1𝑖𝑖−1
𝑇𝑇Δ�̂�𝐷1𝑖𝑖

                                      (50)
(𝑗𝑗 ≥ 2)

𝜆𝜆𝑗𝑗𝑖𝑖

𝜆𝜆𝑗𝑗𝑖𝑖 = − Δ�̂�𝐷1𝑖𝑖−1
𝑇𝑇Δ�̄�𝐷𝑗𝑗𝑖𝑖

Δ�̂�𝐷1𝑖𝑖−1
𝑇𝑇Δ�̂�𝐷𝑗𝑗𝑖𝑖

                                     (51)

 
In this section, two numerical examples will be analyzed to 

verify the accuracy and computational efficiency of the proposed 
method in predicting the nonlinear elastic plastic behavior of CFST 
structures under static loading. The results obtained from the proposed 
method will be compared with experimental results. By using the 
established formulas for beam column elements, a computer program 
will be developed in the Fortran programming language for the 
analysis process.

 

This example is conducted to verify the accuracy of the 
proposed method by comparing the results from the proposed 
method with the results from experiments conducted by some 
authors. The configuration, dimensions, and cross section of the 
CFST column under compressive loading are illustrated in Figure 9 

(a) and (b). The model and discretized cross sections in the proposed 
program are depicted in Figure 9 (c). The detailed dimensions of the 
column structure and material properties used are presented in 
Table 1. To perform the nonlinear analysis, the column structure is 
modeled by four fiber beam column elements, with each element 
using 5 integration points. The axial force deformation curves and 
ultimate axial force between the analysis by the proposed program 
and the experimental results will be used for comparison purposes. 
Four CFST columns subjected to compression tested by Tomii et al. 
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fys = 361,0 N/mm2

fus = 433,8 N/mm2

fys = 361,6 N/mm2 fus = 495,5 N/mm2

fc’ = 56,2 MPa and will be converted to 
cylindrical compressive strength. The load will be applied to the frame 
through two stages. In the first stage, a compressive force
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A new advanced method integrating stability functions and 
distributed plasticity models into fiber beam column elements has 
been successfully developed using Fortran programming language to 
predict the nonlinear elastic plastic behavior of CFST structures under 
static loading. The main results obtained are as follows

(1) The proposed method demonstrates the capability to 
accurately and efficiently analyze the nonlinear inelastic behavior of 
CFST structures under static loading using beam column elements. The 
analysis results obtained from the proposed program closely resemble 
experimental results for both CFST column structures under 
compression, CFST beam structures under flexural compressive 
loading, and large sized composite CFST frames. Therefore, the newly 
proposed method holds promise to provide a new useful tool for 
practical design and analysis of CFST structures.

(2) Solely utilizing beam column elements, the proposed 
method still provides analysis results similar to experiments. This 
demonstrates the effectiveness of the proposed program in terms of 
computational resource efficiency compared to other commercial 
software, as these typically utilize solid and shell elements.

 

 Hoàn Phạm Thái (2021), "Ước lượng khả năng chịu nén đúng tâm của cột 
ống thép nhồi bê tông bằng thuật toán máy học", Tạp chí Khoa học Công 
nghệ Xây dựng (KHCNXD) ĐHXDHN
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