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This paper presents the application of the finite element method into solving the balance equation of seepage
flows within the porous media. More specifically, these seepage flows occur within homogenous embankment

dams. With the specific boundary conditions of water levels in the upstream and downstream sides, the

seepage mechanism takes place, generating the unsaturated zones and the saturated ones as well. The

demarcation surfaces between the un-saturated and saturated zones are called the free surfaces. For

determining these free surfaces, an algorithm of loop is employed, and the convergence is required to locate

the free surfaces. This paper combines the relevant ideas into a program using the Python programming

language. Next, a case is shown using the current sub-routine considering the convergence of the solution

and comparing it to the outcome of a popular software of seepage analysis SEEP/W. The results show that

the algorithm used for locating the free surface is acceptable when dealing with this type of seepage

mechanism.

1. Introduction

In the area of hydraulic structures, since the relevant works
interact with water, seepage usually occurs, and this topic always plays
an important role in the field. Error! Reference source not found.

shows the two common types of seepage through the works.
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Figure 1. Two common types of seepage through dams, (a) through

concrete dams and (b) through embankment dams.
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In Error! Reference source not found.a, the seepage mechanism
is simpler as the seepage zone is fully saturated. However, the one in
Error! Reference source not found.b is more complicated since within
the seepage zone, there are the un-saturated as well as saturated portions.
The interface between two portions has the pore-water pressure equal to
zero. This interface is called the free surface and is not prior known, so
we need an algorithm to determine it.

Due to the rapid development of computer science and
engineering, numerical methods such as finite difference methods,
boundary element methods, finite element methods have been used for
solving this problem, replacing the analytical methods that contain the
simplifications. In the early stage, when the un-saturated soil mechanics
were still limited, one assumed the free surfaces as the boundary of the
saturated and fully dried zones above. The studies following this
approach can be listed as Neuman and Witherspoon [1], Desai [2],
Bathe and Khoshgoftaar [3], Lacy and Prevost [4], Cividini and Gioda
[5], Leontiev and Huacasi [6], Bardet and Tobita [7]. These studies
made a big contribution at the time but not considering the unsaturation
to some extent leads to inappropriate outcomes.

When the un-saturated soil theory had a significant development,
the application of the un-saturated soils into the analysis of soil
mechanics and seepage flows has become more widespread [8]. The
studies relating to this trend can be listed as follows: Neuman [9], Desai
and Li [10], Papagianakis and Fredlund [11]. The use of the un-
saturated soil theory has brought about more appropriate results since
the fundamentals of seepage have been thoroughly examined. However,

this combination leads to the complication of analysis as to the high
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non-linearity.

Currently, the determination of free surfaces has gained
significant achievement. Commercial software such as SEEP/W can
easily solve this problem. However, along with the goal for
implementing our own seepage modelling to further investigations of
groundwater extraction, uncertainty in soil properties in seepage flows,
we have implemented our own program to determine the free surface.
In this study, this idea is applied into the seepage mechanism through
homogenous embankment dams. The paper demonstrates an example
to check the convergence of the algorithm and compares it with

outcome using SEEP/W to see the accuracy of our program.

2. The governing equation of seepage mechanism in two-direction

analysis

‘qz+(6qz/62)dz

Qx gx+(8gx/dx)dx

B

Figure 2. The differential element of seepage mechanism in 2-D analysis.

Using Error! Reference source not found., the balance equation
in this case is as follows:

Qout = Qin =0 (€))
where, Q,,; and Q;, are the flowrates of the seepage flows entering and
leaving the differential element. The components in Error! Reference
source not found. can be presented as follows (where, K, and K, are
the hydraulic conductivities in x and z directions; L and T are the
dimensions of length and time; the width of the element perpendicular

to the elemental plane is one length unit):

qx = —sz—: va q; = —KZZ—IZ (the dimension of 2
L3/T/L%)
Qout—Qin=%dxxdzx1+%dx><dzx1=0 3)
a aH
Qout — Qin = E(_K"a) dx xdzx1
2 aH
+2(~K, ) dx x dzx 1 =0 @

Finally, the governing equation describing this seepage mechanism is as

we (e 5e) + 5 (K5) =0 ®

where H is the hydraulic head.

follows:

3. The Galerkin finite element method

This section is to describe the basic ideas of the Galerkin finite
element method which is employed within this study [12]. When

constructing the finite element method based on the Galerkin approach,

we consider the differential equation (this equation is used for

illustrative purposes only):

2
%+f(x)20 (g S x <) (6)
and the boundary conditions (Error! Reference source not found.):
y(xa) = yo and y(x,) =y, )
An approximate solution is assumed in the form
vy (x) = By (x) 8)

where y; is the value of the solution function at x = x; and n;(x) is a

corresponding trial function.
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Figure 3. Domain x_a<x=x_b discretized into M elements.

Substitution of the assumed solution (8) into the governing
equation (6) yields the residual:

RGuy) = TS5 + £ ()] = ©
= [ @] + £ (0]

to which the application of Galerkin’s weighted residual method is used,
using each trial function as a weighting function, to obtain:

[ nj)RGe; y)dx =

Lm0 S0 [ S @] + F0] dx - G=1,M+ (10)
1)
and this equation can be expressed as:
f,:jﬂ n;(x) [;—; [ym () + yjam (0] +
feO]dx =0 an
G=1L,M+1)

Integration of Equation (11) yields M + 1 algebraic equations in the M +
1 unknown nodal solution values y;, and these equations can be written
in the matrix form

[Krelly} = {F} (12)
where, [Kgz] is the system stiffness matrix, {y} is the vector of nodal
displacements and {F} is the vector of nodal forces. Terms such as
stiffness, displacement and force are used in structural mechanics but
in this study these terms become hydraulic conductivity, hydraulic head
and flux rate instead. Equation (10) is the formal statement of the
Galerkin finite element method and includes both element formation

and system assembly steps.
4. Finite element formulation

In developing a finite element approach to two-dimensional
seepage, we assume a two-dimensional element having M nodes such
that the hydraulic-head distribution in the element is described by:

H(x,z) = XL, Ni(x, 2)H; = [N]{H} (13)
where, N;(x,z) is the interpolation function associated with nodal
hydraulic head H;, [N] is the row matrix of interpolation functions, and
{H} is the column matrix (vector) of nodal hydraulic head. Applying

Galerkin’s finite element method, the residual equations corresponding
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to Equation (5) are:
oH
ff N (x Z) [ax( x 6x)
0 (i=1M)
where, the thickness t is assumed constant and the integration is over

= (tk,50) a4 = (14)

Z 9z

the area of the element (for 2-D analysis, the thickness t is usually taken
as one length unit such as one meter). The mathematical manipulation

and using the Green-Gauss theorem in the plane leads to:

tﬂ [ax( xax) it 52 (Kzaz) ]dA

oH ON;
= —t§, (qxnx+qznz)NdS—tﬂ [k S+ s
0H ON;
K, 222 dA

where, n, and n, are the x and z components of the outward unit vectors
normal (perpendicular) to the periphery.

Returning to the Galerkin residual equation represented by
Equation (14) and substituting the relations developed via the Green-

Gauss theorem, Equation (14) becomes:

If [ QHON; | o OH ON;

X 9x ox KZEB_] tdd = tﬁs (q"nx +

a;n;)N;dS 16)
(i=1M)
as the system of M equations for the two-dimensional finite element
formulation via Galerkin’s method. At this point, we convert to matrix
notation for ease of illustration by employing Equation (13) to convert

Equation (16) to:
N1’ [on
1, [ 2 2]
— 6. qsng[N]"tdS
which is of the form
(K52 1@} = {F} as)

where [K; (e)] is the element hydraulic conductivity matrix (the subscript

T

Z 1oz

e is used for differentiating from the global matrix); {F (e)} is the element

nodal flux rate vector. Assuming the environment is isotropic so K, =

K, =K:
) =g, ([ (2] [ 2] a9

which for an element having M nodes is an M XM symmetric matrix.

And the element nodal flux vector is:
(9} = —§. qns[NI"tdS = — . qen {N}tds (20)

5. Boundary conditions

sa@” o)
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Figure 4. Types of boundary conditions for two-dimensional seepage

analysis.

This analysis normally consists of two types. Error! Reference
source not found. shows the example: in portion S;, the hydraulic head
H is prescribed as Hy;. In modelling, all the nodes located in this portion
have known hydraulic heads and the values that need to be found are
the nodal flux rates (the dimension is ;—i = LT—Z as to the plane analysis).
This boundary type is called H-type. The portion S, has the known flux
values q as qs, (since these values are distributed in a length unit of this
portion so the dimension is m = %). This boundary type is called Q-
type. Therefore, all the nodes located within this portion have the rates
calculated using (20). The similarity is applied to portions S; and S,. In
this analysis, since all the Q-type boundaries have the flux distribution
qs = 0 so at the beginning all the flux values by default equal to zero.
However, due to the free-surface determination, some boudaries need

to be uniquely examined and described in the coming section.

6. Element matrix formulation
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Figure 5. A rectangular element of width 2a and height 2b.

Using the normalized coordinates r and s (Error! Reference
source not found.), the interpolation functions for four-node

rectangular element are:
1
Ny(r,s) = Z(l - -s)

1
N, (r, ) :Z(1+r)(1—5) 21

N;(r,s) = %(1 +7r)(1+5s)

N,(r,s) = %(1 —r)(1+s)
The finite element techniques are employed, leading to the
element stiffness matrix as follows:
KD KD KD K]
w-{ih % o2 ok
k9 k9 k9 «k (22)
KD K9 KD K
The following is an example of calculating one component within
the matrix [Ké?]
K = Keab [* [ [ 2 + S0 L drds (23)

where, K is the hydraulic conductmty, t is the element thickness; 2a

and 2b are the width and height of the element in the natural
coordinates (r, s) (Error! Reference source not found.). The other

components are similarly calculated. However, the integral of Equation
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(23) is performed using numerical integral of Gaussian integration at
the points 7;,s; = £0.57735 with the weighting factors W;, W; = 1.0 and

i,j = 1.2. Therefore, we have:

K = Ke252, 52, Lww(s —1)" + (24)
K232, 52, S Ww 0y — 1)
S
3
4 3
1.1 (1,1
4

z |

1 2
: @) (-1,-1) (1,-1)

X
Figure 6. (a) A four-node, two-dimensional iso-parametric element;

(b) The parent element in natural coordinates.

The meshes automatically generated usually are not rectangular
shapes but quadrilateral shapes (Error! Reference source not found.).
Then, the existing theory suggests using the iso-parametric formulation
as follows:

Ky =Kt Z SP¥E 116WW(SJ - 1) U (ris)l
+Kt2 z S Wi — D2 ()| (25)
where, |/ (ri,sj)| is the determinant of Jacobi matrix at coordinates 7;

and s; as follows:

6x 0z
_ P /u] o o (26)
21 J22 9x 0z

65 ds.

The following is an example of calculating one component of the

Jacobi matrix:
Ju =5 = 245 = 410~ Dx + (1 - 27)
$)x, + (1 + s)x3 — (1 + 5)x4]
Combining all the element matrices leads to the global equation
as follows:

(Krel{H} = {F,} (28)
where, [Kz;] is the global hydraulic conductivity matrix of the size of
My x My with M; as total number of the nodes of the system; {H} is the
global hydraulic-head vector, the size of My X 1; and {F,} is the global

nodal flux rates, the size of M, x 1.
7. Un-saturated hydraulic conductivity and free surface

As presented, the hydraulic conductivity K appears in the
equations for calculating the hydraulic conductivity matrices [i.e.
Equation (25)]. The seepage flow with the dam body (Error! Reference
source not found.) generates the un-saturated zone above the saturated
one (the free surface is the boundary to separate these two zones). This
un-saturated zone still has the seepage flow but the hydraulic
conductivities within these zones are adjusted (less than the original

saturated ones). This study employes the model of van Genuchten [13]

for calculating the un-saturated hydraulic conductivities. Based on this
theory, the un-saturated hydraulic conductivities depend on the
pressure heads at the interest points (denoted by h) and can be
presented as follows:

K(h) = KK, () (29)
where, K; is the saturated hydraulic conductivity and K, (h) is the
normalized form, h is the pressure head so equal to hydraulic head
minus the elevation at the point. The values of K,.(h) can be calculated
based on two parameters a and n. The values of K, (h) equal one if the
pressure head h greater than zero (at the saturated state) and vice
versa (e.g. at the unsaturated state, pressure head h less than or equal
to zero, K,.(h) is less than one). The equation of K, can be used [13,
14] as follows:

[1-(aP™ 1) (1+(aP™) m] (30)

[(1+aP)m™/2
where P is matrix suction (kPa) (matrix suction is defined as difference

K, =

between pore air pressure and pore water pressure); a is a parameter
(kPa!); n is a parameter; m is a parameter calculatedasm =1 — 1/n (a

and n are the empirical parameters determined from the experiments).
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Figure 7. The seepage mechanism within a homogenous embankment dam.

Error! Reference source not found. shows an example of a
homogenous embankment dam constructed on an impervious
foundation layer. The upstream-side water level is as high as hy,
compared to the ground level and the downstream-side one hg,,,,,. The
free surface generated within the dam body has the exit point E located
higher than the downstream water level. These conditions lead to the
following boundary conditions (see Error! Reference source not
found.):

e The boundaries AB and GF have the H-type boundary of the
upstream and downstream hydraulic water levels respectively.

e The boundary BCD is above the saturated zone. Theoretically,
there can be the un-saturated flows leaving these boundaries. However,
these flow rates are unsignificant compared to the saturated flows and
to simplify the numerical solution these boundaries can be treated as
non-flow boundaries (or Q-type boundaries and the values of F; equal
to zero). The popular software in seepage analysis of SEEP/W also
employs these boundary types when dealing with these types of

seepage.
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e The boundary DF is more complicated since there is an exit
point E appearing within this boundary. The portion EF is called
seepage face, and it is expected to have the leaving flows out of the dam
body. When dealing with this type of seepage, the user can anticipate
which portions contain the exit points and treat these portions based on
a unique procedure described in the following section. In popular
software SEEP/W, these portions are marked as ‘potential seepage face’
and the software employs the procedure to determine the exit point and
the free surface.

The procedure of determining the exit point or the seepage face
within the ‘potential seepage face’ (DF in the problem in Error!
Reference source not found.) is presented as follows ([9] and [14]):

e At the beginning, the boundary condition Q-type is set (F, =
0 at all the nodes within this boundary DF). The problem is solved using
Equation (28) with the given boundary conditions. Therefore, the free
surface and exit point or seepage face are determined. The free surface
is determined through the pore water pressure field and using the
interpolation technique to get the points of pore water pressure of zero.

o Within the seepage face, if the pressure heads are greater than
zero (i.e. the hydraulic heads H are greater than their elevations) it is
unacceptable. This is, the Q-type (F, = 0) for this boundary is incorrect
so that the procedure converts the such nodes’ boudaries to the H-type
with pressure heads h of zero (the hydraulic heads H equal the nodes’
elevations).

e Based on the outcomes of the next step, if there are the nodes
of pressure heads are zero but the flux rates at these nodes are greater
than zero (i.e. there are the flows entering the dam body) it is also
unacceptable. These kinds of nodes are converted to Q-type (F, = 0).

e The procedure is continued until all the nodes within the
seepage face have the pressure heads equal to zero and the flux rates

less and equal to zero.

8. Flowchart

This section presents the flowchart for programming the program
combining all the above-mentioned ideas. The programming language
used in this study is Python. As mentioned, this problem has two aspects
needing to be solved using the iteration technique (the flowchart is
presented in Error! Reference source not found.):

e The first one relates to adjusting the hydraulic conductivities
to adapt to calculated pressure heads at the interest points (h). For
example, at the beginning, the Q-type and H-type boundary conditions
are set as presented in the previous sections. Equation (28) is solved
using the saturated hydraulic conductivity for the entire dam body. The
calculated pressure heads at all the Gaussian nodes are used for re-
calculating the hydraulic conductivities at these nodes, leading to
change the element hydraulic conductivity matrices through the
equations [e.g. Equation (25)]. The stopping condition for this loop is
based on the difference between two consecutive results of total flow
rates through the dam body. And the stopping difference is less than

0,01 %. The loop for changing the hydraulic conductivities due to un-
saturation is called US loop (US stands for the un-saturation).
e The second one relates to the change of the free surface and

seepage face. This loop is called SF (SF stands for the seepage face).

Calculate the element matrices
using the initial data

Assemble and solve
the system equations

Update the element matrices
using the updated pressure heads

Assemble and solve
the updated system equations
Check if the US stopping criterion

is satisfied No
|Yes

US loop

SF loop

Check if the SF stopping criterion Yes
is satisfied

[No
—| Set the seepage face boundary condition

Figure 8. The flowchart of the program.

9. Results and discussion

This study employs a problem presented in Error! Reference
source not found.. Hence, the simple shape of square embankment
dam is considered: the length of a side is 10 m. The heights (compared
to the ground level) of the upstream and downstream water levels are
hy, = 8 m and hy,y, = 2 m, respectively. The foundation is impervious
and the soil used for the modelling has relevant parameters shown in
Table 1: K; is the saturated hydraulic conductivity, the parameters a
and n are used for van Genuchten model [13] to calculate the relevant

un-saturated hydraulic conductivities.

— free surface
exit point
© (=)
L seepage face |™
L
- v 2
2 l 8
=
o X
10

Figure 9. The problem shape used for the investigation of the
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algorithm (the length dimension is meter).

Table 1. The soil’s parameters.

K, (m/s) a (kPa-1) n

10 0.10 2.5

For the discretization, we employ a tool of Gmsh [15]. This tool
can create triangular and quadrilateral elements. The mesh sizes are
defined by a parameter called size factor. Error! Reference source not
found. shows the mesh used in this example: the mesh employs
quadrilaterals of four Gaussian points and the size factor of 0,3 leading
to the interest zone having 1464 nodes and 1393 elements (Error!

Reference source not found.).

te to the seepage face.
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Figure 10. Discretization using quadrilateral elements.

The nodes located within the seepage face (the nodes are
governed by the SF loop) are shown in

We employ the simulation using SEEP/W [14]. The same
geometry as well as the parameters of van Genuchten model are used in
SEEP/W. Error! Reference source not found. and Error! Reference
source not found. show the comparation. The insignificant differences
in the heights of the free surfaces and the flowrates through the whole
dams demonstrate the encouragement of our own program.
un-saturated hydraulic conductivities (US loop). Error! Reference

source not found. shows the US loops of SF steps 1 and 4. The results

and Error! Reference source not found.. In this modeling, the
program performs 4 loop steps relating to the seepage face (SF loop).
After step 1, the seepage face has 7 nodes that are not satisfied with the
stopping criterion as all the pressure heads are greater than zero.
Therefore, the boundary condition is changed for the next step. Finally,
the stopping criterion is satisfied in step 4.

Besides, the flowchart in Error! Reference source not found.

shows that in each step of SF, there is a loop relating to changing the

Table 2. The results relate to the seepage face.

show that in SF step 1, the algorithm needs 6 iterations of the US loop
and the SF step 4 needs 9 US iterations to achieve the convergence.
We employ the simulation using SEEP/W [14]. The same
geometry as well as the parameters of van Genuchten model are used in
SEEP/W. Error! Reference source not found. and Error! Reference
source not found. show the comparation. The insignificant differences
in the heights of the free surfaces and the flowrates through the whole

dams demonstrate the encouragement of our own program.

Step heyie (m) Nodes x (m) z (m) (X107 33/5/111) h (m) Boundary conditions for the next step
46 10 2.29 0 0.60 H-type
47 10 2.57 0 0.71 H-type
48 10 2.86 0 0.70 H-type
1 4,00 49 10 3.14 0 0.63 H-type
50 10 3.43 0 0.52 H-type
51 10 3.71 0 0.37 H-type
52 10 4.00 0 0.19 H-type
46 10 2.29 -3.34 0 H-type
47 10 2.57 -2.53 0 H-type
48 10 2.86 -1.94 0 H-type
2 4,00 49 10 3.14 -1.38 0 H-type
50 10 3.43 -0.70 0 H-type
51 10 3.71 2.66 0 Q-type
52 10 4.00 1.42 0 Q-type
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Table 2. The results relate to the seepage face.

Step heyie (M) Nodes x (m) z (m) (x107 23/s/m) h (m) Boundary conditions for the next step
46 10 2.29 -3.29 0 H-type
47 10 2.57 -2.46 0 H-type
3 3,43 48 10 2.86 -1.82 0 H-type
49 10 3.14 -1.09 0 H-type
50 10 3.43 +0.20 0 Q-type
46 10 2.29 -3.29 0 (the stopping condition is met)
4 3,00 47 10 2.57 -2.45 0 (the stopping condition is met)
48 10 2.86 -1.80 0 (the stopping condition is met)
&) 52 &) 52
b 51 $ 51 -
> 50 50 - 050
¢ 49 ¢ 49 ¢ 49 =z
o 48 o 48 o 48 ® 48
¢ 47 ¢ 47 ¢ 47 ¢ 47
¢ 46 b 46 ¢ 46 46
S 52 AV L
@ © ® @

3,85

3,75

3,65

3,55

3,45

3,35

Q (x10% m3/s/m)

3,25

3,15

3,05

Figure 11. The change of the seepage face through the loop steps.

—o—Step 1 (SF) =3~ Step 4 (SF)

D - il = = RS B
©
1 2 3 4 5 6 7 8 9

Number of iterations

Figure 12. The results of total flow through the dam body relating to the US loop.
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Figure 13. Comparation of the results from SEEP/W and the current model: the left-side curve relates to SEEP/W and the right-side the

current model (the vertical axis is z-axis, and the horizontal one is x-axis).

Table 3. Comparison of outcomes from the current model and SEEP/W

(h, is the height of the free surface compared to the ground elevation at

As we discussed, this program is just a part of an expected future

routine used for considering groundwater problems. It is no doubt that
our program still has limitations, and some aspects need to be revised
such as using higher-degree elements, the meshes that should be finer
around the seepage faces, more layers of soils within dam bodies should

be used.
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conductivities and the seepage face. Besides, we have compared our
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