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Ứng dụng công nghệ số và trí tuệ nhân tạo trong đánh giá độ bền vật liệu ô tô: 
Tiềm năng và xu hướng phát triển 
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 Trong bối cảnh ngành công nghiệp ô tô chuyển dịch mạnh mẽ sang các xu hướng xe điện, xe tự hành và 
phát triển bền vững, việc kiểm định và đánh giá độ bền vật liệu ngày càng trở nên quan trọng nhằm đảm 
bảo an toàn, tối ưu hiệu suất và giảm chi phí sản xuất. Các phương pháp kiểm định truyền thống như thử 
cơ học (kéo, nén, mỏi, va chạm) và kiểm định không phá hủy (siêu âm, X-quang, từ trường) tuy đã được 
ứng dụng rộng rãi nhưng vẫn tồn tại những hạn chế như chi phí cao, thời gian kéo dài và khó dự đoán 
chính xác trong điều kiện vận hành thực tế. Sự phát triển của công nghệ số và trí tuệ nhân tạo (AI) đã mở 
ra những cơ hội mới, trong đó các công cụ mô phỏng số như CAE (Computer-Aided Engineering), FEM 
(Finite Element Method) hay mô hình song sinh số (Digital Twin) cho phép dự đoán hành vi vật liệu trong 
nhiều kịch bản vận hành khác nhau. Đồng thời, các thuật toán học máy (Machine Learning) và học sâu 
(Deep Learning) đã chứng minh hiệu quả trong việc xử lý dữ liệu lớn, nhận dạng vi cấu trúc vật liệu, phát 
hiện hư hỏng từ hình ảnh hoặc tín hiệu cảm biến. Bài báo này tập trung tổng quan các nghiên cứu gần đây 
về ứng dụng công nghệ số và AI trong kiểm định độ bền vật liệu ô tô, đồng thời so sánh với một số ứng 
dụng trong lĩnh vực xây dựng nhằm rút ra những bài học liên ngành. Trên cơ sở đó, bài báo thảo luận ưu 
điểm, thách thức và đưa ra xu hướng phát triển tương lai, hướng tới hệ thống kiểm định vật liệu thông 
minh, tự động hóa và bền vững. 
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 Amid the automotive industry’s rapid shift toward electrification, autonomous driving, and sustainability, 
inspection and durability assessment of automotive materials are becoming increasingly critical to ensure 
safety, optimize performance, and reduce production costs. Traditional experimental methods—mechanical 
testing (tension, compression, fatigue, impact) and non-destructive testing (ultrasonic, X-ray, magnetic)—are 
widely used but still have limitations, including high cost, lengthy execution time, and difficulty in accurately 
predicting material behavior under real operating conditions. The remarkable advances in digital technologies 
and artificial intelligence (AI) have opened new avenues for this field. Numerical simulation tools such as 
computer-aided engineering (CAE), the finite element method (FEM), and digital twins enable more accurate 
prediction of material responses under diverse loading scenarios. In parallel, machine learning (ML) and deep 
learning (DL) have proved effective in processing large datasets, recognizing material microstructures, and 
detecting damage from images or sensor signals. This paper provides an overview of recent research on the 
application of digital technologies and AI to durability evaluation of automotive materials, while comparing 
analogous applications in the construction sector to extract cross-disciplinary lessons. On this basis, the paper 
discusses key advantages, remaining challenges, and proposes future directions, aiming toward intelligent, 
automated, and sustainable material inspection systems. 
 

 
1. Giới thiệu 
 
 Ngành công nghiệp ô tô hiện đại đang chứng kiến những thay 
đổi to lớn dưới tác động của điện khí hóa, tự động hóa và yêu cầu 
phát triển bền vững. Vật liệu sử dụng trên xe hơi phải đáp ứng các 
tiêu chí ngày càng khắt khe về độ bền cơ học, khả năng chịu mỏi và 

chống ăn mòn trong suốt vòng đời sản phẩm [1]. Việc đánh giá độ 
bền vật liệu vì thế trở thành yếu tố quan trọng trong quá trình thiết kế 
và sản xuất ô tô, nhằm đảm bảo các thành phần chịu lực quan trọng 
(khung xe, vỏ xe, hệ thống treo, v.v.) hoạt động an toàn dưới mọi điều 
kiện vận hành [2, 3]. Trước đây, các phương pháp thử nghiệm truyền 
thống như thử kéo, nén, uốn và thử mỏi được sử dụng rộng rãi để xác 
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định đặc tính cơ học và tuổi thọ mỏi của vật liệu [4]. Đồng thời, các 
kỹ thuật kiểm tra không phá hủy (Non-Destructive Testing - NDT) như 
chụp X-quang, siêu âm, kiểm tra từ tính cũng được áp dụng để phát 
hiện khuyết tật bên trong vật liệu mà không gây hư hại mẫu [5]. Tuy 
nhiên, những phương pháp này thường tốn kém, mất nhiều thời gian 
và đòi hỏi phải thử nghiệm trên nhiều mẫu vật lý, trong khi kết quả 
thu được không phải lúc nào cũng dự báo chính xác hành vi của vật 
liệu trong điều kiện làm việc thực tế [6]. 
 Sự tiến bộ trong lĩnh vực công nghệ số và AI những năm gần đây 
đã mở ra triển vọng mới nhằm khắc phục các hạn chế nói trên [7]. Thay 
vì dựa hoàn toàn vào thử nghiệm thực nghiệm, các kỹ sư ngày nay có 
thể tận dụng mô phỏng số để dự đoán đặc tính và tuổi thọ vật liệu. Các 
phần mềm CAE với mô hình phần tử hữu hạn (FEM) cho phép mô 
phỏng ứng suất-biến dạng và sự phát triển vết nứt trong cấu kiện ô tô 
dưới tác động của tải trọng phức tạp, giúp tiết kiệm thời gian và chi phí 
so với thử nghiệm truyền thống [8]. Gần đây, khái niệm song sinh số 
(Digital Twin) cũng được giới thiệu vào lĩnh vực ô tô: một mô hình số 
phản ánh trung thực trạng thái và hành vi của cấu trúc vật lý theo thời 
gian thực [9]. Song sinh số có thể được cập nhật liên tục dựa trên dữ 
liệu cảm biến thu thập từ xe thực, cho phép dự báo hư hỏng hoặc suy 
giảm tính năng của vật liệu trước khi sự cố xảy ra [10]. Bên cạnh mô 
phỏng vật lý, trí tuệ nhân tạo đang trở thành công cụ đắc lực hỗ trợ quá 
trình đánh giá độ bền vật liệu. Các thuật toán học máy cho phép phân 
tích lượng dữ liệu thí nghiệm khổng lồ để tìm ra quy luật tiềm ẩn mà 
con người khó nhận biết [11]. Ví dụ, mô hình học sâu có thể học đặc 
trưng từ ảnh hiển vi kim loại để tự động nhận dạng pha vật liệu hoặc 
dự đoán cường độ, độ cứng dựa trên vi cấu trúc [12]. Trong lĩnh vực 
kiểm tra không phá hủy, AI đã được ứng dụng để phân tích ảnh chụp X-
quang, ảnh nhiệt hay tín hiệu dao động từ cảm biến, nhằm phát hiện 
sớm các vết nứt, ăn mòn hoặc khuyết tật vật liệu với độ chính xác cao 
hơn phương pháp truyền thống [13][14]. 
 Mục tiêu của bài báo này là tổng hợp các hướng tiếp cận tiêu 
biểu trong việc ứng dụng công nghệ số và AI cho đánh giá độ bền vật 
liệu ô tô. Bài viết khái quát nền tảng và nghiên cứu liên quan, thảo 
luận kết quả – ý nghĩa thực tiễn, và chỉ ra thách thức kèm định hướng 
phát triển. Qua đó, bài báo cung cấp bức tranh hệ thống và gợi ý triển 
khai nhằm tiến tới các quy trình kiểm định thông minh, tự động và 
đáng tin cậy 

 
2. Tổng quan tài liệu 
 
 Nhiều nghiên cứu trong thập kỷ qua đã tập trung phát triển các 
phương pháp số và AI nhằm nâng cao hiệu quả đánh giá độ bền cho 
vật liệu kỹ thuật. Dưới đây là tổng quan một số hướng tiếp cận chính 
đã được công bố trong tài liệu.  
 
2.1. Mô phỏng số và dự báo độ bền vật liệu 
 
 Phương pháp phần tử hữu hạn (FEM) từ lâu đã là công cụ 
chuẩn trong phân tích ứng suất và dự đoán tuổi thọ mỏi của kết cấu 

cơ khí. Trong ngành ô tô, FEM được sử dụng để mô phỏng các bài thử 
nghiệm ảo, chẳng hạn như mô phỏng va chạm (crash simulation) hoặc 
kiểm tra độ bền mỏi khung gầm, giúp đánh giá được giới hạn bền của 
vật liệu và cấu trúc trước khi chế tạo nguyên mẫu [15]. Nhiều nghiên 
cứu chỉ ra rằng kết quả mô phỏng số có độ tương đồng cao với kết 
quả thử nghiệm thực tế, với sai số trong phạm vi chấp nhận được. 
Bên cạnh FEM, các kỹ thuật mô phỏng đa vật lý (multi-physics 
simulation) cũng được áp dụng để xét đến ảnh hưởng đồng thời của 
nhiều yếu tố (nhiệt độ, môi trường, tải trọng động, v.v.) lên độ bền 
vật liệu [16]. Gần đây, mô hình song sinh số nổi lên như một bước 
tiến mới: thay vì chỉ mô phỏng tĩnh, song sinh số cho phép kết nối mô 
hình số với hệ thống thực thông qua dữ liệu thời gian thực [17]. 
 

 
Hình 1. Kiến trúc Digital Twin cho bảo trì dự đoán trong ngành ô tô. 

 
 Trong lĩnh vực ô tô, song sinh số của một cụm chi tiết (ví dụ bộ 
pin xe điện hoặc hệ thống treo) có thể dự báo suy giảm hiệu năng 
dưới các chế độ vận hành khác nhau, từ đó hỗ trợ bảo trì dự phòng 
và tối ưu thiết kế vật liệu. Ngoài ra, một số nghiên cứu liên ngành còn 
ứng dụng mô phỏng số trong lĩnh vực xây dựng và cơ sở hạ tầng, 
chẳng hạn mô phỏng độ bền vật liệu xây dựng dưới tác động môi 
trường, cung cấp bài học có thể áp dụng cho ngành ô tô [18, 19]. 

 
2.2. Ứng dụng AI trong phân tích vật liệu 
 
 Trí tuệ nhân tạo, đặc biệt là các kỹ thuật học máy, đã được 
triển khai trong nhiều khâu của quá trình đánh giá vật liệu. Một 
hướng đi nổi bật là sử dụng mô hình học máy để phân tích dữ liệu 
thử nghiệm mỏi và dự đoán tuổi thọ còn lại của vật liệu. Chẳng hạn, 
các công trình đã phát triển mô hình mạng neuron nhân tạo dự báo 
tuổi thọ mỏi của thép và hợp kim nhôm dựa trên dữ liệu hàng trăm 
thử nghiệm, cho độ chính xác dự báo cao hơn hẳn so với mô hình hồi 
quy truyền thống. Bên cạnh đó, học sâu với mạng neuron nhiều lớp 
(CNN) tỏ ra hữu ích trong việc xử lý ảnh vật liệu. Nghiên cứu trong 
cho thấy mạng CNN có thể phân loại các kiểu vi cấu trúc (grain, pha, 
khuyết tật vi mô) từ ảnh chụp kính hiển vi với độ chính xác trên 
90 %, vượt trội so với phương pháp phân tích thủ công. Một số nhóm 
nghiên cứu khác ứng dụng thị giác máy tính để phát hiện vết nứt bề 
mặt trên chi tiết ô tô thông qua ảnh camera hoặc ảnh nhiệt hồng 
ngoại. Kết quả chỉ ra rằng hệ thống AI có thể phát hiện các khuyết tật 
rất nhỏ (dưới 1 mm) mà mắt thường khó nhận ra, đồng thời giảm 
thiểu cảnh báo sai so với phương pháp truyền thống [14, 20]. 
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định đặc tính cơ học và tuổi thọ mỏi của vật liệu [4]. Đồng thời, các 
kỹ thuật kiểm tra không phá hủy (Non-Destructive Testing - NDT) như 
chụp X-quang, siêu âm, kiểm tra từ tính cũng được áp dụng để phát 
hiện khuyết tật bên trong vật liệu mà không gây hư hại mẫu [5]. Tuy 
nhiên, những phương pháp này thường tốn kém, mất nhiều thời gian 
và đòi hỏi phải thử nghiệm trên nhiều mẫu vật lý, trong khi kết quả 
thu được không phải lúc nào cũng dự báo chính xác hành vi của vật 
liệu trong điều kiện làm việc thực tế [6]. 
 Sự tiến bộ trong lĩnh vực công nghệ số và AI những năm gần đây 
đã mở ra triển vọng mới nhằm khắc phục các hạn chế nói trên [7]. Thay 
vì dựa hoàn toàn vào thử nghiệm thực nghiệm, các kỹ sư ngày nay có 
thể tận dụng mô phỏng số để dự đoán đặc tính và tuổi thọ vật liệu. Các 
phần mềm CAE với mô hình phần tử hữu hạn (FEM) cho phép mô 
phỏng ứng suất-biến dạng và sự phát triển vết nứt trong cấu kiện ô tô 
dưới tác động của tải trọng phức tạp, giúp tiết kiệm thời gian và chi phí 
so với thử nghiệm truyền thống [8]. Gần đây, khái niệm song sinh số 
(Digital Twin) cũng được giới thiệu vào lĩnh vực ô tô: một mô hình số 
phản ánh trung thực trạng thái và hành vi của cấu trúc vật lý theo thời 
gian thực [9]. Song sinh số có thể được cập nhật liên tục dựa trên dữ 
liệu cảm biến thu thập từ xe thực, cho phép dự báo hư hỏng hoặc suy 
giảm tính năng của vật liệu trước khi sự cố xảy ra [10]. Bên cạnh mô 
phỏng vật lý, trí tuệ nhân tạo đang trở thành công cụ đắc lực hỗ trợ quá 
trình đánh giá độ bền vật liệu. Các thuật toán học máy cho phép phân 
tích lượng dữ liệu thí nghiệm khổng lồ để tìm ra quy luật tiềm ẩn mà 
con người khó nhận biết [11]. Ví dụ, mô hình học sâu có thể học đặc 
trưng từ ảnh hiển vi kim loại để tự động nhận dạng pha vật liệu hoặc 
dự đoán cường độ, độ cứng dựa trên vi cấu trúc [12]. Trong lĩnh vực 
kiểm tra không phá hủy, AI đã được ứng dụng để phân tích ảnh chụp X-
quang, ảnh nhiệt hay tín hiệu dao động từ cảm biến, nhằm phát hiện 
sớm các vết nứt, ăn mòn hoặc khuyết tật vật liệu với độ chính xác cao 
hơn phương pháp truyền thống [13][14]. 
 Mục tiêu của bài báo này là tổng hợp các hướng tiếp cận tiêu 
biểu trong việc ứng dụng công nghệ số và AI cho đánh giá độ bền vật 
liệu ô tô. Bài viết khái quát nền tảng và nghiên cứu liên quan, thảo 
luận kết quả – ý nghĩa thực tiễn, và chỉ ra thách thức kèm định hướng 
phát triển. Qua đó, bài báo cung cấp bức tranh hệ thống và gợi ý triển 
khai nhằm tiến tới các quy trình kiểm định thông minh, tự động và 
đáng tin cậy 

 
2. Tổng quan tài liệu 
 
 Nhiều nghiên cứu trong thập kỷ qua đã tập trung phát triển các 
phương pháp số và AI nhằm nâng cao hiệu quả đánh giá độ bền cho 
vật liệu kỹ thuật. Dưới đây là tổng quan một số hướng tiếp cận chính 
đã được công bố trong tài liệu.  
 
2.1. Mô phỏng số và dự báo độ bền vật liệu 
 
 Phương pháp phần tử hữu hạn (FEM) từ lâu đã là công cụ 
chuẩn trong phân tích ứng suất và dự đoán tuổi thọ mỏi của kết cấu 

cơ khí. Trong ngành ô tô, FEM được sử dụng để mô phỏng các bài thử 
nghiệm ảo, chẳng hạn như mô phỏng va chạm (crash simulation) hoặc 
kiểm tra độ bền mỏi khung gầm, giúp đánh giá được giới hạn bền của 
vật liệu và cấu trúc trước khi chế tạo nguyên mẫu [15]. Nhiều nghiên 
cứu chỉ ra rằng kết quả mô phỏng số có độ tương đồng cao với kết 
quả thử nghiệm thực tế, với sai số trong phạm vi chấp nhận được. 
Bên cạnh FEM, các kỹ thuật mô phỏng đa vật lý (multi-physics 
simulation) cũng được áp dụng để xét đến ảnh hưởng đồng thời của 
nhiều yếu tố (nhiệt độ, môi trường, tải trọng động, v.v.) lên độ bền 
vật liệu [16]. Gần đây, mô hình song sinh số nổi lên như một bước 
tiến mới: thay vì chỉ mô phỏng tĩnh, song sinh số cho phép kết nối mô 
hình số với hệ thống thực thông qua dữ liệu thời gian thực [17]. 
 

 
Hình 1. Kiến trúc Digital Twin cho bảo trì dự đoán trong ngành ô tô. 

 
 Trong lĩnh vực ô tô, song sinh số của một cụm chi tiết (ví dụ bộ 
pin xe điện hoặc hệ thống treo) có thể dự báo suy giảm hiệu năng 
dưới các chế độ vận hành khác nhau, từ đó hỗ trợ bảo trì dự phòng 
và tối ưu thiết kế vật liệu. Ngoài ra, một số nghiên cứu liên ngành còn 
ứng dụng mô phỏng số trong lĩnh vực xây dựng và cơ sở hạ tầng, 
chẳng hạn mô phỏng độ bền vật liệu xây dựng dưới tác động môi 
trường, cung cấp bài học có thể áp dụng cho ngành ô tô [18, 19]. 

 
2.2. Ứng dụng AI trong phân tích vật liệu 
 
 Trí tuệ nhân tạo, đặc biệt là các kỹ thuật học máy, đã được 
triển khai trong nhiều khâu của quá trình đánh giá vật liệu. Một 
hướng đi nổi bật là sử dụng mô hình học máy để phân tích dữ liệu 
thử nghiệm mỏi và dự đoán tuổi thọ còn lại của vật liệu. Chẳng hạn, 
các công trình đã phát triển mô hình mạng neuron nhân tạo dự báo 
tuổi thọ mỏi của thép và hợp kim nhôm dựa trên dữ liệu hàng trăm 
thử nghiệm, cho độ chính xác dự báo cao hơn hẳn so với mô hình hồi 
quy truyền thống. Bên cạnh đó, học sâu với mạng neuron nhiều lớp 
(CNN) tỏ ra hữu ích trong việc xử lý ảnh vật liệu. Nghiên cứu trong 
cho thấy mạng CNN có thể phân loại các kiểu vi cấu trúc (grain, pha, 
khuyết tật vi mô) từ ảnh chụp kính hiển vi với độ chính xác trên 
90 %, vượt trội so với phương pháp phân tích thủ công. Một số nhóm 
nghiên cứu khác ứng dụng thị giác máy tính để phát hiện vết nứt bề 
mặt trên chi tiết ô tô thông qua ảnh camera hoặc ảnh nhiệt hồng 
ngoại. Kết quả chỉ ra rằng hệ thống AI có thể phát hiện các khuyết tật 
rất nhỏ (dưới 1 mm) mà mắt thường khó nhận ra, đồng thời giảm 
thiểu cảnh báo sai so với phương pháp truyền thống [14, 20]. 

 

 

 

 
Hình 2. Phát hiện khuyết tật mối hàn bằng CNN/YOLO. 

 
 Gần đây, nhiều tập đoàn ô tô hàng đầu thế giới cũng đã bắt đầu 
áp dụng trí tuệ nhân tạo trong kiểm soát chất lượng vật liệu và mối 
hàn. Một ví dụ điển hình là Audi và Volkswagen, khi họ triển khai hệ 
thống AI kiểm tra mối hàn trên dây chuyền sản xuất: trước đây công 
nhân phải kiểm tra khoảng 5.000 mối hàn bằng siêu âm, nhưng hệ 
thống AI hiện có thể phân tích 1,5 triệu mối hàn trên 300 ô tô mỗi ca 
làm việc. Sau thử nghiệm thành công, hệ thống này sẽ được triển khai 
tại nhiều nhà máy khác, với việc tinh chỉnh mô hình AI theo từng quy 
trình hàn tại mỗi cơ sở [21]. 

Trong lĩnh vực NDT, thuật toán học sâu cũng được dùng để 
phân tích tín hiệu siêu âm và cộng hưởng, giúp xác định vị trí và kích 

thước khuyết tật bên trong vật liệu một cách tự động. Ngoài ra, việc 
kết hợp dữ liệu từ nhiều cảm biến (vibration, âm thanh, hình ảnh) và 
dùng AI để phân tích tổng hợp (multimodal learning) đang là xu 
hướng mới nhằm đánh giá tình trạng vật liệu một cách toàn diện. 
Những thành tựu này không chỉ được ghi nhận trong ngành ô tô mà 
còn có song song trong lĩnh vực xây dựng - ví dụ, các tòa nhà cầu 
đường hiện đại cũng trang bị cảm biến để theo dõi biến dạng, vết nứt, 
và AI được dùng để dự báo sức chịu tải còn lại của kết cấu. Việc tham 
khảo các kết quả từ ngành xây dựng giúp các kỹ sư ô tô có thêm góc 
nhìn về độ tin cậy và tính khả mở rộng của các phương pháp AI trong 
môi trường khác nhau. 
 

 
Hình 3. Ứng dụng AI để kiểm tra các mối hàn trên thân xe [21]

 
Bảng 1. So sánh ba cách tiếp cận (CAE/FEM, Digital Twin, AI/NDE). 

Cách tiếp cận Mục tiêu chính Dữ liệu đầu vào Ưu điểm Hạn chế 

CAE/FEM 
Phân tích ứng suất–biến 
dạng; dự báo mỏi; tối ưu 
thiết kế trước thử nghiệm 

Thông số vật liệu; hình học; 
điều kiện biên; phổ tải đường 
(MBD/PSD) 

Giảm nguyên mẫu; thử nhiều 
kịch bản; định lượng điểm 
nóng; hỗ trợ tối ưu đa mục 
tiêu 

Chi phí tính toán; phụ thuộc 
tham số vật liệu/biên; cần 
V&V nghiêm ngặt 

Digital Twin 
(PdM) 

Đồng bộ mô hình–thực thể; 
giám sát thời gian thực; dự 
báo RUL; tối ưu bảo trì 

Dữ liệu cảm biến IoT (rung, 
nhiệt, ứng suất, điện…); mô 
hình số; 

Giảm dừng máy; bảo trì theo 
điều kiện; phát hiện sớm suy 
giảm; đóng vòng đời dữ liệu 

Hạ tầng dữ liệu/cảm biến; 
tích hợp hệ thống cũ; an ninh 
& chuẩn hóa 

AI/NDE (ML/DL, 
NDE 4.0) 

Dự báo mỏi; phát hiện 
khuyết tật; tự động hóa 
kiểm định; hợp nhất đa 
cảm biến 

Dữ liệu thí nghiệm/mô 
phỏng/; ảnh X-quang/siêu 
âm/quang; tín hiệu rung/AE 

Độ chính xác cao; tốc độ xử 
lý; giảm chủ quan; mở đường 
kiểm tra 100 % 

Cần dữ liệu gắn nhãn; tính 
“hộp đen”; rủi ro ngoại suy; 

 
3. Thảo luận 
 
 Từ tổng quan trên, có thể thấy việc ứng dụng công nghệ số và 
AI đã mang lại nhiều lợi ích rõ rệt trong đánh giá độ bền vật liệu ô tô. 
Thứ nhất, các phương pháp mô phỏng số (FEM, song sinh số) cho 
phép giảm đáng kể số lượng thử nghiệm vật lý cần thiết. Điều này 
không chỉ giúp tiết kiệm chi phí và thời gian mà còn cho phép nhanh 
chóng thử nghiệm nhiều kịch bản tải trọng mà thực nghiệm khó hoặc 
không thể thực hiện [8][18]. Chẳng hạn, thay vì chế tạo nhiều nguyên 
mẫu khung xe để thử mỏi dưới các mức tải khác nhau, kỹ sư có thể 
mô phỏng trên máy tính để dự báo chu kỳ đến khi nứt gãy cho từng 

trường hợp [15]. Kết quả mô phỏng nếu được hiệu chỉnh tốt bằng dữ 
liệu thực nghiệm sẽ có độ tin cậy cao, giúp rút ngắn chu kỳ phát triển 
sản phẩm. 

Thứ hai, việc tích hợp AI vào quy trình đánh giá vật liệu giúp 
nâng cao độ chính xác và khả năng tự động hóa. Các hệ thống học 
máy có thể tự động xử lý dữ liệu cảm biến trong thời gian thực, phát 
hiện sớm dấu hiệu bất thường của vật liệu mà con người có thể bỏ sót 
[13]. Điều này đặc biệt hữu ích trong bối cảnh các phương tiện hiện 
đại được trang bị hàng trăm cảm biến IoT, tạo ra luồng dữ liệu liên 
tục về trạng thái của các bộ phận. AI cho phép sàng lọc và phân tích 
khối dữ liệu lớn này để đưa ra cảnh báo bảo trì trước khi sự cố xảy 
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ra, từ đó nâng cao tính an toàn và độ tin cậy của xe [10, 16]. Một ví 
dụ là hệ thống giám sát kết cấu cầu đường thông minh trong xây 
dựng: cảm biến sẽ đo dao động và AI phân tích để đánh giá độ bền 
còn lại của kết cấu, ý tưởng này có thể chuyển giao sang ô tô nhằm 
theo dõi khung xe hoặc thân xe trong quá trình sử dụng [19]. 
 

 
Hình 4. Thử nghiệm độ bền mỏi bánh xe dựa trên Digital Twin 

(virtual testing). 
 
 Bên cạnh những ưu điểm, cũng cần thảo luận sự phù hợp của 
từng phương pháp trong ngữ cảnh cụ thể. Mô phỏng số tỏ ra hiệu quả 
với các bài toán đã hiểu rõ cơ chế vật lý và có mô hình toán học tốt, ví 
dụ tính toán ứng suất hoặc mô phỏng mỏi theo lý thuyết cơ học phá 
hủy. Tuy nhiên, nếu mô hình vật liệu không đầy đủ hoặc dữ liệu đầu 
vào (thuộc tính vật liệu, điều kiện biên) không chính xác, kết quả mô 
phỏng có thể sai lệch đáng kể. Ngược lại, phương pháp AI có ưu thế 
trong việc khám phá quy luật từ dữ liệu, nhưng lại thường như “hộp 
đen” thiếu tính giải thích rõ ràng. Trong thực tế, một chiến lược kết hợp 
đang nổi lên: sử dụng mô phỏng vật lý để tạo dữ liệu huấn luyện cho 
mô hình AI, hoặc dùng AI tinh chỉnh tham số mô hình số dựa trên dữ 
liệu thực tế, nhằm tận dụng điểm mạnh của cả hai bên [17][20]. 
 Một điểm đáng chú ý khác là sự khác biệt về mức độ chấp nhận 
công nghệ giữa các lĩnh vực. Ngành ô tô với chu kỳ sản phẩm nhanh và 
áp lực cạnh tranh cao đã sớm triển khai các công cụ CAE và thử nghiệm 
ảo vào quy trình thiết kế. Trong khi đó, ngành xây dựng truyền thống 
chậm thay đổi hơn, nhưng gần đây cũng bắt đầu áp dụng BIM (Building 
Information Modeling) và song sinh số cho quản lý vòng đời công trình. 
Việc so sánh liên ngành cho thấy tiềm năng ứng dụng rộng rãi của công 
nghệ số và AI không chỉ giới hạn trong phạm vi ô tô, mà còn có thể mở 
rộng sang nhiều lĩnh vực kỹ thuật khác. 
 Bên cạnh sự khác biệt giữa các lĩnh vực, việc triển khai công 
nghệ số và trí tuệ nhân tạo trong đánh giá vật liệu cũng chịu ảnh 
hưởng mạnh mẽ bởi bối cảnh kinh tế – công nghiệp của từng quốc 
gia. Ở Việt Nam, xu thế chuyển đổi số và phát triển ngành ô tô đang 

tạo điều kiện thuận lợi cho việc áp dụng các mô hình này trong thực 
tế. Ngành công nghiệp chế tạo trong nước đang bước vào giai đoạn 
tăng tốc chuyển đổi số, với mục tiêu hình thành hệ sinh thái sản xuất 
thông minh và tự động hóa cao. Trong bối cảnh đó, việc ứng dụng 
công nghệ số và trí tuệ nhân tạo trong kiểm định vật liệu ô tô mang ý 
nghĩa đặc biệt quan trọng, góp phần nâng cao chất lượng sản phẩm, 
tiết kiệm chi phí và thời gian thử nghiệm. 
 Hiện nay, các doanh nghiệp sản xuất linh kiện, khung vỏ và hệ 
thống treo vẫn chủ yếu dựa vào quy trình thử nghiệm cơ học truyền 
thống, vốn tốn kém và kéo dài. Việc kết hợp mô phỏng số (CAE/FEM) 
và thuật toán học máy (Machine Learning) giúp xây dựng mô hình thử 
nghiệm ảo (Virtual Testing), có khả năng rút ngắn 30–50 % thời gian 
kiểm định và tăng độ chính xác dự đoán hư hỏng vật liệu. Ở cấp độ 
triển khai, mô hình song sinh số (Digital Twin) có thể được áp dụng 
thí điểm tại các trung tâm R&D của Thaco, VinFast, Hyundai Thành 
Công hoặc các trường đại học kỹ thuật, nhằm giám sát và dự báo tuổi 
thọ vật liệu. Đồng thời, việc phát triển nền tảng kiểm định vật liệu 
thông minh “Made in Vietnam” sẽ mở ra cơ hội hợp tác giữa trường 
đại học – viện nghiên cứu – doanh nghiệp, phù hợp với Chiến lược 
phát triển công nghiệp ô tô Việt Nam đến năm 2030, tầm nhìn 2050. 

 
4. Thách thức và định hướng tương lai 
 
 Mặc dù hứa hẹn, việc triển khai công nghệ số và AI trong đánh 
giá độ bền vật liệu ô tô vẫn đối mặt với nhiều thách thức. Thứ nhất là 
chất lượng và tính sẵn có của dữ liệu. Để mô hình AI dự báo chính 
xác tuổi thọ vật liệu, cần có lượng dữ liệu thử nghiệm mỏi và dữ liệu 
cảm biến phong phú, đa dạng cho quá trình huấn luyện. Tuy nhiên, 
không phải lúc nào các hãng xe hay phòng thí nghiệm cũng có đủ dữ 
liệu cần thiết, đặc biệt với các vật liệu mới hoặc kết cấu mới. Việc thu 
thập dữ liệu mỏi dài hạn đòi hỏi thời gian và chi phí, do đó một số 
nghiên cứu đề xuất sử dụng dữ liệu giả lập từ mô phỏng FEM để bổ 
sung [20]. Điều này dẫn đến thách thức thứ hai là tính tin cậy và khả 
năng tổng quát hóa của mô hình. Mô hình AI được huấn luyện trong 
phòng thí nghiệm có thể không phản ánh hết các yếu tố phức tạp 
ngoài thực tế (ví dụ sự thay đổi khí hậu, tải trọng ngẫu nhiên). Vì vậy, 
các mô hình cần được hiệu chỉnh liên tục khi có dữ liệu vận hành 
thực tế, và cần phát triển các kỹ thuật AI có khả năng giải thích để kỹ 
sư hiểu được mô hình đang ra quyết định dựa trên yếu tố nào [17]. 
 Thứ ba, về mặt kỹ thuật, tích hợp hệ thống cũng là một trở 
ngại. Để triển khai song sinh số hoặc hệ thống giám sát thông minh 
trên xe, cần có hạ tầng cảm biến, bộ nhớ và tính toán tương ứng. Các 
cảm biến phải bền bỉ trong môi trường khắc nghiệt (nhiệt độ cao, 
rung động mạnh), dữ liệu phải được truyền và xử lý một cách an 
toàn, nhanh chóng. Điều này đặt ra yêu cầu về băng thông truyền 
thông trong xe (on-board network) cũng như an ninh mạng, tránh 
nguy cơ bị tấn công vào hệ thống AI điều khiển [16]. 
 Bất chấp những thách thức trên, xu hướng phát triển tương lai 
của lĩnh vực này rất rộng mở. Trước tiên, sự phát triển của vật liệu 
thông minh (smart materials) và cảm biến nhúng sẽ cung cấp nguồn 
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ra, từ đó nâng cao tính an toàn và độ tin cậy của xe [10, 16]. Một ví 
dụ là hệ thống giám sát kết cấu cầu đường thông minh trong xây 
dựng: cảm biến sẽ đo dao động và AI phân tích để đánh giá độ bền 
còn lại của kết cấu, ý tưởng này có thể chuyển giao sang ô tô nhằm 
theo dõi khung xe hoặc thân xe trong quá trình sử dụng [19]. 
 

 
Hình 4. Thử nghiệm độ bền mỏi bánh xe dựa trên Digital Twin 

(virtual testing). 
 
 Bên cạnh những ưu điểm, cũng cần thảo luận sự phù hợp của 
từng phương pháp trong ngữ cảnh cụ thể. Mô phỏng số tỏ ra hiệu quả 
với các bài toán đã hiểu rõ cơ chế vật lý và có mô hình toán học tốt, ví 
dụ tính toán ứng suất hoặc mô phỏng mỏi theo lý thuyết cơ học phá 
hủy. Tuy nhiên, nếu mô hình vật liệu không đầy đủ hoặc dữ liệu đầu 
vào (thuộc tính vật liệu, điều kiện biên) không chính xác, kết quả mô 
phỏng có thể sai lệch đáng kể. Ngược lại, phương pháp AI có ưu thế 
trong việc khám phá quy luật từ dữ liệu, nhưng lại thường như “hộp 
đen” thiếu tính giải thích rõ ràng. Trong thực tế, một chiến lược kết hợp 
đang nổi lên: sử dụng mô phỏng vật lý để tạo dữ liệu huấn luyện cho 
mô hình AI, hoặc dùng AI tinh chỉnh tham số mô hình số dựa trên dữ 
liệu thực tế, nhằm tận dụng điểm mạnh của cả hai bên [17][20]. 
 Một điểm đáng chú ý khác là sự khác biệt về mức độ chấp nhận 
công nghệ giữa các lĩnh vực. Ngành ô tô với chu kỳ sản phẩm nhanh và 
áp lực cạnh tranh cao đã sớm triển khai các công cụ CAE và thử nghiệm 
ảo vào quy trình thiết kế. Trong khi đó, ngành xây dựng truyền thống 
chậm thay đổi hơn, nhưng gần đây cũng bắt đầu áp dụng BIM (Building 
Information Modeling) và song sinh số cho quản lý vòng đời công trình. 
Việc so sánh liên ngành cho thấy tiềm năng ứng dụng rộng rãi của công 
nghệ số và AI không chỉ giới hạn trong phạm vi ô tô, mà còn có thể mở 
rộng sang nhiều lĩnh vực kỹ thuật khác. 
 Bên cạnh sự khác biệt giữa các lĩnh vực, việc triển khai công 
nghệ số và trí tuệ nhân tạo trong đánh giá vật liệu cũng chịu ảnh 
hưởng mạnh mẽ bởi bối cảnh kinh tế – công nghiệp của từng quốc 
gia. Ở Việt Nam, xu thế chuyển đổi số và phát triển ngành ô tô đang 

tạo điều kiện thuận lợi cho việc áp dụng các mô hình này trong thực 
tế. Ngành công nghiệp chế tạo trong nước đang bước vào giai đoạn 
tăng tốc chuyển đổi số, với mục tiêu hình thành hệ sinh thái sản xuất 
thông minh và tự động hóa cao. Trong bối cảnh đó, việc ứng dụng 
công nghệ số và trí tuệ nhân tạo trong kiểm định vật liệu ô tô mang ý 
nghĩa đặc biệt quan trọng, góp phần nâng cao chất lượng sản phẩm, 
tiết kiệm chi phí và thời gian thử nghiệm. 
 Hiện nay, các doanh nghiệp sản xuất linh kiện, khung vỏ và hệ 
thống treo vẫn chủ yếu dựa vào quy trình thử nghiệm cơ học truyền 
thống, vốn tốn kém và kéo dài. Việc kết hợp mô phỏng số (CAE/FEM) 
và thuật toán học máy (Machine Learning) giúp xây dựng mô hình thử 
nghiệm ảo (Virtual Testing), có khả năng rút ngắn 30–50 % thời gian 
kiểm định và tăng độ chính xác dự đoán hư hỏng vật liệu. Ở cấp độ 
triển khai, mô hình song sinh số (Digital Twin) có thể được áp dụng 
thí điểm tại các trung tâm R&D của Thaco, VinFast, Hyundai Thành 
Công hoặc các trường đại học kỹ thuật, nhằm giám sát và dự báo tuổi 
thọ vật liệu. Đồng thời, việc phát triển nền tảng kiểm định vật liệu 
thông minh “Made in Vietnam” sẽ mở ra cơ hội hợp tác giữa trường 
đại học – viện nghiên cứu – doanh nghiệp, phù hợp với Chiến lược 
phát triển công nghiệp ô tô Việt Nam đến năm 2030, tầm nhìn 2050. 

 
4. Thách thức và định hướng tương lai 
 
 Mặc dù hứa hẹn, việc triển khai công nghệ số và AI trong đánh 
giá độ bền vật liệu ô tô vẫn đối mặt với nhiều thách thức. Thứ nhất là 
chất lượng và tính sẵn có của dữ liệu. Để mô hình AI dự báo chính 
xác tuổi thọ vật liệu, cần có lượng dữ liệu thử nghiệm mỏi và dữ liệu 
cảm biến phong phú, đa dạng cho quá trình huấn luyện. Tuy nhiên, 
không phải lúc nào các hãng xe hay phòng thí nghiệm cũng có đủ dữ 
liệu cần thiết, đặc biệt với các vật liệu mới hoặc kết cấu mới. Việc thu 
thập dữ liệu mỏi dài hạn đòi hỏi thời gian và chi phí, do đó một số 
nghiên cứu đề xuất sử dụng dữ liệu giả lập từ mô phỏng FEM để bổ 
sung [20]. Điều này dẫn đến thách thức thứ hai là tính tin cậy và khả 
năng tổng quát hóa của mô hình. Mô hình AI được huấn luyện trong 
phòng thí nghiệm có thể không phản ánh hết các yếu tố phức tạp 
ngoài thực tế (ví dụ sự thay đổi khí hậu, tải trọng ngẫu nhiên). Vì vậy, 
các mô hình cần được hiệu chỉnh liên tục khi có dữ liệu vận hành 
thực tế, và cần phát triển các kỹ thuật AI có khả năng giải thích để kỹ 
sư hiểu được mô hình đang ra quyết định dựa trên yếu tố nào [17]. 
 Thứ ba, về mặt kỹ thuật, tích hợp hệ thống cũng là một trở 
ngại. Để triển khai song sinh số hoặc hệ thống giám sát thông minh 
trên xe, cần có hạ tầng cảm biến, bộ nhớ và tính toán tương ứng. Các 
cảm biến phải bền bỉ trong môi trường khắc nghiệt (nhiệt độ cao, 
rung động mạnh), dữ liệu phải được truyền và xử lý một cách an 
toàn, nhanh chóng. Điều này đặt ra yêu cầu về băng thông truyền 
thông trong xe (on-board network) cũng như an ninh mạng, tránh 
nguy cơ bị tấn công vào hệ thống AI điều khiển [16]. 
 Bất chấp những thách thức trên, xu hướng phát triển tương lai 
của lĩnh vực này rất rộng mở. Trước tiên, sự phát triển của vật liệu 
thông minh (smart materials) và cảm biến nhúng sẽ cung cấp nguồn 

 

 

dữ liệu phong phú hơn về trạng thái vật liệu theo thời gian thực, tạo 
tiền đề cho các mô hình dự báo độ bền chính xác hơn. Song song đó, 
các thuật toán AI thế hệ mới (ví dụ học tăng cường, học chuyển tiếp) 
hứa hẹn cải thiện khả năng mô hình thích nghi với dữ liệu mới và ra 
quyết định tối ưu hơn. Việc kết hợp AI với cơ sở tri thức truyền thống 
(knowledge-based AI) cũng có thể giúp hệ thống phân tích vật liệu 
đưa ra được các giải thích trực quan cho kỹ sư, tăng sự tin cậy khi 

ứng dụng thực tế [17]. Cuối cùng, sự hợp tác liên ngành giữa các 
chuyên gia vật liệu, chuyên gia AI và kỹ sư ô tô sẽ đóng vai trò quan 
trọng. Các dự án hợp tác nghiên cứu giữa ngành ô tô và xây dựng, 
hoặc giữa khu vực học thuật và công nghiệp, sẽ giúp chia sẻ dữ liệu 
và kinh nghiệm, đẩy nhanh việc hoàn thiện các hệ thống kiểm định 
vật liệu thông minh, tự động và bền vững trong tương lai. 

 
Bảng 2. Lộ trình triển khai DT/AI trong nhà máy/xe. 

Giai đoạn Hạ tầng dữ liệu–cảm biến KPI chính Rủi ro & kiểm soát 

Thí điểm (PoC) 3–6 tháng Cảm biến chọn lọc; gateway; 
pipeline ETL; môi trường mô phỏng 

Giảm X % thời gian kiểm định; 
giảm Y % lỗi tái kiểm 

Chất lượng dữ liệu; sai lệch mô 
hình → thiết lập V&V; kiểm soát 
truy cập 

Mở rộng theo mô-đun Chuẩn hóa schema; kho dữ liệu; DT 
cho cụm/line; dashboard XAI 

Tăng độ bao phủ kiểm tra 100 %; 
thời gian cảnh báo sớm 

An ninh mạng; tương thích OT/IT; 
quản trị vòng đời mô hình 

Vận hành thường trực Giám sát trực tiếp; cập nhật mô 
hình định kỳ; SLA cảnh báo 

Giảm dừng máy; RUL dự báo 
chính xác; tiết kiệm chi phí bảo trì 

Drift dữ liệu; tuân thủ; kiểm toán 
mô hình; diễn giải quyết định 

 
5. Kết luận 
 
 Công nghệ số và trí tuệ nhân tạo đang định hình lại cách thức 
đánh giá độ bền vật liệu trong ngành ô tô. Thông qua mô phỏng số 
(CAE/FEM, song sinh số), các kỹ sư có thể dự đoán hiệu năng vật liệu 
một cách nhanh chóng và tiết kiệm, trong khi các công cụ AI mở ra 
khả năng phân tích dữ liệu chuyên sâu, tự động phát hiện hư hỏng và 
dự báo tuổi thọ với độ chính xác cao. Bài báo đã tổng quan những 
tiến bộ nổi bật trong lĩnh vực này, từ ứng dụng mô phỏng truyền 
thống đến những kỹ thuật AI hiện đại, đồng thời chỉ ra rằng xu hướng 
liên ngành có thể mang lại những giải pháp sáng tạo. Mặc dù còn đó 
các thách thức về dữ liệu, độ tin cậy của mô hình và tích hợp hệ 
thống, triển vọng phát triển vẫn rất lạc quan. Trong tương lai gần, 
việc kết hợp hài hòa giữa mô hình vật lý và mô hình dữ liệu, cùng với 
sự hỗ trợ của các cảm biến tiên tiến, sẽ cho phép xây dựng những hệ 
thống kiểm định độ bền vật liệu thông minh, tự động hóa cao và bền 
vững, góp phần đảm bảo an toàn và nâng cao hiệu suất cho thế hệ 
phương tiện giao thông mới. 

 
Tài liệu tham khảo 
 
[1]. A. Theissler, J. Pérez-Velázquez, M. Kettelgerdes, and G. Elger, “Predictive 

maintenance enabled by machine learning: Use cases and challenges in the 
automotive industry,” Reliability Engineering & System Safety, vol. 215, p. 
107864, 2021. DOI:10.1016/j.ress.2021.107864.  

[2]. D. Zhong, Z. Xia, Y. Zhu, and J. Duan, “Overview of predictive 
maintenance based on digital twin technology,” Heliyon, vol. 9, no. 4, 
e14534, 2023. DOI:10.1016/j.heliyon.2023.e14534.  

[3]. C. Chen, H. Fu, Y. Zheng, F. Tao, and Y. Liu, “The advance of digital twin 
for predictive maintenance: The role and function of machine learning,” 
Journal of Manufacturing Systems, 2023. DOI:10.1016/j.jmsy.2023.10.010.  

[4]. W. Booyse, D. N. Wilke, and S. Heyns, “Deep digital twins for detection, 
diagnostics and prognostics,” Mechanical Systems and Signal Processing, vol. 
140, 106612, 2020. DOI:10.1016/j.ymssp.2019.106612.  

[5]. R. Minerva, G. M. Lee, and N. Crespi, “Digital Twin in the IoT context: A 
survey on technical features, scenarios, and architectural models,” 
Proceedings of the IEEE, vol. 108, pp. 1785–1824, 2020. 
DOI:10.1109/JPROC.2020.2998530.  

[6]. T. Vrana and R. Singh, “NDE 4.0: Design thinking perspective,” Journal of 
Nondestructive Evaluation, vol. 40, 27, 2021. DOI:10.1007/s10921-020-
00735-9.  

[7]. F. Venturini, J. Serrano-Muñoz, F. Memola, A. Dialli, and D. Menghini, 
“Virtual testing of the fatigue performance of automotive wheels: A digital 
twin approach,” Engineering Failure Analysis, vol. 158, 107979, 2024. 
DOI:10.1016/j.engfailanal.2024.107979.  

[8]. A. P. Putra and A. Machmud, “Predicting the fatigue life of an automotive 
coil spring due to road surface roughness,” Engineering Failure Analysis, vol. 
116, 104722, 2020. DOI:10.1016/j.engfailanal.2020.104722.  

[9]. Y.-Y. Zhou and H.-C. Chang, “A virtual iteration method for ride comfort 
improvement and fatigue durability enhancement of a rear axle,” Shock 
and Vibration, 2022, Article ID 8598491. DOI:10.1155/2022/8598491.  

[10]. M. N. Hamada, H. D. Ma, and M.-G. Lee, “Advancing fatigue life prediction 
with machine learning: A comprehensive review,” Materials Today 
Communications, vol. 36, 111525, 2025. 
DOI:10.1016/j.mtcomm.2025.111525.  

[11]. A. A. Gbagba, F. C. Niccolò, S. Vladimiro, and F. Concli, “Advances in 
machine learning techniques used in fatigue life prediction of welded 
structures: A review,” Applied Sciences, vol. 14, no. 1, 398, 2024. 
DOI:10.3390/app14010398.  

[12]. K. Wang et al., “Weld surface defect detection using attention-driven deep 
learning models,” Scientific Reports, vol. 14, 2407, 2024. 
DOI:10.1038/s41598-024-56794-9.  

[13]. Y. Zhang and Q. Ni, “A novel weld-seam defect detection algorithm based 
on the S-YOLO model,” Axioms, vol. 12, no. 7, 697, 2023. DOI:10.3390 
/axioms12070697. 



JOMC 252

Tạp chí Vật liệu & Xây dựng Tập 15 Số 06 năm 2025
 

 

[14]. J. Liu, L. Zhang, and X. Deng, “Intelligent metal welding defect detection 
model on X-ray images based on improved FAST-PNN,” Coatings, vol. 12, 
no. 10, 1523, 2022. DOI:10.3390/coatings12101523.  

[15]. X. Zhong, J. Zhang, J.-C. Chang, and K. T. Chu, “Explainable machine 
learning in materials science,” npj Computational Materials, vol. 8, 144, 
2022. DOI:10.1038/s41524-022-00884-7.  

[16]. F. Oviedo et al., “Interpretable and explainable machine learning for 
materials science and chemistry,” Accounts of Materials Research, vol. 3, pp. 
597–607, 2022. DOI:10.1021/accountsmr.1c00244. 

[17]. L. Wang, S.-P. Zhu, and C. Luo, “Physics-guided machine learning 
frameworks for fatigue life prediction of AM materials,” International 
Journal of Fatigue, vol. 172, 107658, 2023. 
DOI:10.1016/j.ijfatigue.2023.107658.  

[18]. P. J. Phillips et al., “Four principles of explainable artificial intelligence,” 
NIST Interagency/Internal Report (NIST IR 8312), 2021. 
DOI:10.6028/NIST.IR.8312.  

[19]. S. Werbińska-Wojciechowska and G. Skorupka, “Digital twin approach for 
operation and maintenance of transportation system—Systematic review,” 
Sensors, vol. 24, no. 18, 6069, 2024. DOI:10.3390/s24186069. 

[20]. M. Pech, J. Brida, and D. Vrchota, “Predictive maintenance and intelligent 
sensors in smart factory: Review,” Sensors, vol. 21, no. 4, 1247, 2021. 
DOI:10.3390/s21041247.  

[21]. Gauthier, M. (2023, June 30). Audi And Volkswagen Will Use AI For 
Quality Control Purposes. Carscoops. 
https://www.carscoops.com/2023/06/audi-and-volkswagen-will-use-ai-
for-quality-control-purposes/ 

 


