

Khảo sát đặc tính cấu trúc, tính chất quang của vật liệu Nanocomposit gC_3N_4 -CuO₂ và gC_3N_4 -TNTs/TiO₂ chế tạo theo phương pháp thủy nhiệt

Tạ Ngọc Dũng¹, Lưu Thị Hồng², Huỳnh Đăng Chính¹, Nguyễn Thị Lan¹

¹ Viện Kỹ thuật Hóa Học, Trường Đại học Bách Khoa Hà Nội, Số 1- Đại Cồ Việt, Hà Nội, Việt Nam
² Viện Vật liệu Xây dựng, 235 Nguyễn Trãi, Thanh Xuân, Hà Nội, Việt Nam

TỪ KHOÁ	TÓM TẮT				
gC3N4-Cu2O gC3N4-TNTs/TiO2 Cấu trúc lớp graphit Nanocomposit Octahedra Nanorods	Các vật liệu nanocomposit gC ₃ N ₄ -Cu ₂ O, gC ₃ N ₄ -TNTs/TiO ₂ được tiến hành chế tạo theo phương pháp thủy nhiệt. Tỷ lệ pha tạp của nano gC ₃ N ₄ vào Cu ₂ O là 10 % mol và pha tạp vào TNTs/TiO ₂ là 15 % mol (so sánh với số mol của Cu ²⁺ và Ti ⁴⁺ tương ứng). Đặc tính cấu trúc của vật liệu được xác định bằng các phương pháp: XRD, XEM/EDX. Tính chất quang của vật liệu được xác định bằng phương pháp phổ hấp thụ. Kết quả cho thấy, các mẫu gC ₃ N ₄ -Cu ₂ O, gC ₃ N ₄ -TNTs/TiO ₂ đều có cấu trúc nano-mét. Mẫu gC ₃ N ₄ - Cu ₂ O có các hạt tinh thể bát diện (octahedra) với kích thước hạt ~300 - 400 nm. Mẫu gC ₃ N ₄ -TNTs/TiO ₂ có các hạt tinh thể dạng thanh nano với chiều dài thanh ~ 5 - 10 µm và chiều rộng thanh ~ 80 - 100 nm. Trên bề mặt các hạt tinh thể của nanocomposit gC ₃ N ₄ -Cu ₂ O, gC ₃ N ₄ -TNTs/TiO ₂ đều có xen lẫn tinh thể dạng lớp bông mờ của nano gC ₃ N ₄ . Phổ hấp thụ của các nanocomposit có bờ hấp thụ mở rộng và nằm trung gian trong khoảng độ mở rộng bờ hấp thụ của các vật liệu đơn pha tương ứng. Năng lượng vùng cấm quang Eg của nanocomposit gC ₃ N ₄ -Cu ₂ O và gC ₃ N ₄ -TNTs/TiO ₂ lần lượt là 2,01 eV và 3,39 eV là giá trị trung gian giữa giá trị năng lượng vùng cấm của các vật liệu nano đơn pha Cu ₂ O, TNTs, TiO ₂ (tương ứng Eg≈ 2,17 eV, 3,61 eV, 3,2 eV) và vật liệu pha tạp nano gC ₃ N ₄ (Eg ≈ 2,73 eV).				
KEYWORDS gC3N4-Cu2O gC3N4-TNTs/TiO2 Graphite layer structure Nanocomposite Octahedra Nanorods	ABSTRACT The gC ₃ N ₄ -Cu ₂ O, gC ₃ N ₄ -TNTs/TiO ₂ nanocomposites were fabricated by the hydrothermal method. The doping ratio of gC ₃ N ₄ nano to Cu ₂ O was 10 mol. % and to TNTs/TiO ₂ was 15 mol. % (compare the molarity of Cu ²⁺ and Ti ⁴⁺ , respectively). The structural characteristics of the materials were determined by the methods: XRD, SEM/EDX. The optical properties of the materials were determined by the absorption spectroscopy method. Results showed that, the gC ₃ N ₄ -Cu ₂ O, gC ₃ N ₄ -TNTs/TiO ₂ samples were nano-meter structure. The gC ₃ N ₄ - Cu ₂ O sample had octahedral crystals with grain size ~ 300 - 400 nm. The gC ₃ N ₄ - TNTs/TiO ₂ sample had nanorods crystals with length size ~ 5 - 10 µm and width size ~ 80 - 100 nm. On the surface of the crystal particles of gC ₃ N ₄ - Cu ₂ O, gC ₃ N ₄ - TNTs/TiO ₂ nanocomposites were interwoved with gC ₃ N ₄ translucent cotton-like crystals. The absorption spectra of nanocomposites all had extended absorption edge and were intermediate in the range of extended absorption edge of single- phase materials, respectively. The band gap energy (Eg) of gC ₃ N ₄ - Cu ₂ O, gC ₃ N ₄ - TNTs/TiO ₂ nanocomposites were 2.01 eV, 3.39 eV, respectively. This Eg value was determined to be an intermediate value between the Eg values of the single-phase Cu ₂ O, TNTs, TiO ₂ nanomaterials (Eg ≈ 2.17				

eV, 3.61 eV, 3.2 eV, respectively) and the doped gC_3N_4 nanomaterials (Eg \approx 2.73 eV).

1. Giới thiệu

Vật liệu nano cacbon nitrua (gC₃N₄) được biết đến là chất bán dẫn dạng polyme hữu cơ loại n không chứa kim loại. Vật liệu này có cấu trúc gần giống với graphene (cấu trúc đơn lớp của than chì) và có năng lượng vùng cấm hẹp (Eg \approx 2,7 eV) [1]. Nano gC₃N₄ là một trong những vật liệu nano tiên tiến được chú ý quan tâm nghiên cứu bởi nhiều nhóm nghiên cứu trên thế giới và trong nước trong những lĩnh vực ứng dụng như: chuyển đổi năng lượng mặt trời, cảm biến sinh học, xúc tác quang phân hủy chất bẩn hữu cơ, xử lý nước thải, môi trường, pin, siêu tụ điện, diot phát ánh sáng trắng, đèn LED,... [1-4]. Tuy nhiên, trong những ứng dụng của vật liệu gC_3N_4 với sự kích thích bởi ánh sáng nhìn thấy bị hạn chế, do tốc độ tái kết hợp tương đối nhanh của cặp điện tử - lỗ trống quang sinh. Một trong những biện pháp khắc phục hạn chế này là chế tạo vật liệu ghép hay vật liệu composit giữa gC_3N_4 với một chất bán dẫn khác. Những chất bán dẫn

phổ biến có lĩnh vực nghiên cứu ứng dụng gần giống với chất bán dẫn polyme hữu cơ gC₃N₄ được kể đến như: TiO₂, ZnO, CdS, Cu₂O, CuO,... Trong đó, nổi bật nhất vẫn là TiO₂ và Cu₂O với sự phong phú về nguồn nguyên liêu, giá thành thấp, không độc hai [2 - 4]. TiO₂ dang anata có khả năng oxi hóa cao nhưng lại có năng lượng vùng cấm rộng (Eg ≈ 3,25 eV) chỉ được kích hoạt ở vùng ánh sáng tử ngoại. Cu₂O nổi bật với năng lượng vùng cấm hẹp (Eg \approx 2,17 eV) nên đạt được khả năng cao với những ứng dụng được kích hoạt ở vùng ánh sáng nhìn thấy [5 - 10]. Tuy nhiên, nhiều công trình nghiên cứu đã cho thấy các vật liêu trên như TiO₂, Cu₂O,... ở dang đơn pha thì đều đạt hiệu quả thấp trong các nghiên cứu ứng dụng quang và quang điện tử do tốc độ tái kết hợp nhanh chóng của cặp điện tử - lỗ trống (e⁻, h⁺) quang sinh [2 - 7]. Biện pháp để tăng cường hiệu quả tách và giảm tốc độ tái kết hợp cặp e⁻, h⁺ quang sinh đó là: sự pha tạp; giảm kích thước hạt nano; chế tạo vật liệu ghép; chế tạo vật liệu composit của hai hoặc nhiều chất bán dẫn khác nhau; hoặc chế tạo vật liệu với hình dang khác nhau (cầu nano, thanh nano, dây nano, ống nano, chóp nano, râu và hoa,...) [2 - 11]. Môt vài nghiên cứu cũng đã chỉ ra rằng vật liệu nano TiO₂ nano đơn pha chế tao được phổ biến ở dang tinh thể hình cầu nano. Khi vật liêu ở dang pha hỗn hợp nano TiO₂ và nano Na2TiO3 (TNTs) đã tạo được tinh thể dạng hình que nano hoặc thanh nano [11,12]. Dẫn đến làm tăng cường được nhiều đặc tính và tính chất vật lý lý thú hơn cho vật liệu nano TiO₂.

Với những phân tích trên, chúng tôi đã tiến hành khảo sát đặc tính cấu trúc, tính chất quang của vật liệu nanocomposit gC_3N_4 - Cu_2O , gC_3N_4 - $TNTs/TiO_2$ chế tạo theo phương pháp thủy nhiệt và so sánh với đặc tính của vật liệu đơn pha gC_3N_4 , Cu_2O , TiO_2 , TNTs, là vật liệu được chế tạo trong các nghiên cứu trước của nhóm nghiên cứu chúng tôi và theo tài liệu tham khảo.

2. Thực nghiệm

2.1. Hóa chất

Các hóa chất sử dụng trong nghiên cứu đều là hóa chất tinh khiết bao gồm: Đồng sunphat (CuSO₄ . 5H₂O 99,9 %, AR-China); Natri Sunfit (Na₂SO₃ 99,9 %, AR-China); Urea ((NH₂)₂CO \geq 46,3 %, AR-Vietnam); Thiourea ((NH₂)₂CS \geq 99 %, AR- China); Natri hiđroxit (NaOH \geq 90%, AR- China); Degussa Titan dioxide (TiO₂ P25 \geq 99,9 %, -Đức); nước cất 2 lần.

2.2. Quy trình thực nghiệm

- Quy trình chế tạo nano gC₃N₄: Một lượng hỗn hợp gồm 25 g Urea ((NH₂)₂CO) và 25 g Thioure ((NH₂)₂CS) được trộn lẫn đồng đều và nghiền mịn trên cối mã não. Tiếp theo, cho hỗn hợp bột nghiền mịn này vào chén sứ đậy nắp kín, rồi đem nung ở 500°C trong 2 giờ, tốc độ gia nhiệt 5°C/phút. Sản phẩm sau nung thu được là chất bột mịn polyme gC₃N₄ màu vàng nhạt. Chất bột mịn gC₃N₄ này được sử dụng để chế tạo nanocomposit với Cu₂O và TNTs/TiO₂. - Quy trình chế tạo nanocomposit gC_3N_4 - Cu_2O : Một dung dịch hỗn hợp gồm đồng sunphat $CuSO_4$. $5H_2O$ 0,1 M và natri Sunfit Na_2SO_3 0,1 M được trộn lẫn theo tỉ lệ mol là 1 : 10. Dung dịch hỗn hợp lúc này có màu màu xanh nhạt. Dung dịch hỗn hợp được cho khuấy trên máy khuấy từ ở tốc độ 250 rpm trong 30 phút rồi bắt đầu cho gia nhiệt đến nhiệt độ 90°C. Tiếp theo, một lượng bột gC_3N_4 với tỉ lệ phần trăm về số mol so với số mol của Cu^{2+} là 10 % được cho thêm vào dung dịch hỗn hợp. Tiếp tục vẫn cho khuấy dung dịch hỗn hợp đến khi có xuất hiện kết tủa màu nâu đỏ, rồi cho khuấy tiếp thêm 30 phút nữa. Sau đó, dung dịch hỗn hợp được đem thủy nhiệt 120°C trong 48 giờ. Kết thúc thủy nhiệt thu được bột nhão, đem rửa và lọc bằng giấy lọc nhiều lần với nước cất 2 lần. Bột mịn sạch được đem sấy khô ở 90°C trong 24 giờ. Sản phẩm cuối cùng thu được là mẫu bột mịn màu dỏ nâu, ký hiệu mẫu là gC_3N_4 - Cu_2O .

- Quy trình chế tạo nanocomposit gC₃N₄ - TNTs/TiO₂: Một khối lượng bột nano TiO₂ P25 theo tính toán được hòa vào trong 100 mL dung dịch NaOH 10 M và cho khuấy đều dung dịch hỗn hợp trên máy khuấy từ trong 10 phút. Tiếp theo, thêm vào dung dịch hỗn hợp trên một lượng bột nano gC₃N₄ với tỷ lệ mol là 15 % so với số mol của Ti⁴⁺ và vẫn khuấy đều tiếp hỗn hợp thêm 10 phút nữa. Dung dịch hỗn hợp thu được này cho vào bình thép autoclave và cho thủy nhiệt ở 150°C trong 24 giờ. Sản phẩm bột nhão sau thủy nhiệt đem ly tâm rửa sạch mẫu nhiều lần với nước cất 2 lần. Sau đó, bột sạch đem sấy ở 90°C trong 24 giờ, thu được bột sạch mịn màu trắng, ký hiệu mẫu là gC₃N₄-TNTs/TiO₂.

Sản phẩm các mẫu vật liệu chế tạo nanocomposit gC_3N_4 -Cu₂O, gC_3N_4 - TNTs/TiO₂ và mẫu vật liệu nano gC_3N_4 được biểu diễn ở Hình 1.

+ Các phương pháp đo đặc tính vật liệu: Các đặc tính của vật liệu được đo bằng phương pháp vật lý: Phương pháp nhiễu xạ tia X (XRD, X'pert Pro (PANalytical) MPD, tia bức xạ Cu-K^a (λ =1.54065 Å), tốc độ quét 0.03°/2s, với góc quét 20 ≈ 25 - 75°); phương pháp hiển vi điện từ quét/ phổ tán xạ năng lượng EDX (SEM/EDX, HITACHI TM4000 Plus); phương pháp phổ hấp thụ UV-Vis rắn (DRUV-Vis, Jasco V - 750) với sử dụng quả cầu tích hợp 60 mm (ISV-922), tốc độ quét 200 nm/min.

Hình 1. Sản phẩm các mẫu vật liệu nano
composit gC_3N_4-Cu_2O, gC_3N_4-TNTs/TiO_2 và mẫu nano gC_3N_4.

3. Kết quả thực nghiệm

3.1. Đặc tính cấu trúc vật liệu

Kết quả nhiễu xạ tia X (XRD) của các mẫu vật liệu nano
composit gC_3N_4-Cu_2O, gC_3N_4-TNTs/TiO_2 và mẫu vật liệu nano

gC₂N₄ được biểu diễn trên Hình 2. Trên hình phổ XRD cho thấy: mẫu nanocomposit gC₃N₄ - Cu₂O xuất hiện các đỉnh nhiễu xa (pic nhiễu xa) ở các vi trí góc nhiễu xa $2\theta \approx 29,5^\circ$, $36,2^\circ$, $42,5^\circ$, $61,5^\circ$ tương ứng với các ho mặt mang tinh thể (110), (111), (200) (220) của mẫu vật liêu Cu₂O [2,5 - 7]. Mẫu nanocomposit gC₃N₄ - TNTs/TiO₂ xuất hiện các pic nhiễu xạ ở các vị trí góc nhiễu xạ 20 ≈ 23,5°, 28,2°, 34,2° tương ứng với các họ mặt mạng tinh thể (211), (310), (321) của mẫu vật liệu Na₂TiO₃ (ký hiệu là: TNTs) [11-12]. Bên cạnh đó, mẫu gC₃N₄-TNTs/TiO₂ còn có các pic nhiễu xa ở các vi trí góc nhiễu xa $2\theta \approx$ 38,2°, 48,4°, 62,5° tương ứng với các ho mặt mang tinh thể (112), (200), (204) của mẫu vật liệu TiO₂ [3,4,6,7] (trong phổ của mẫu gC_3N_4 - TNTs/TiO₂ thì: (*) được ký hiệu là pic của pha tinh thể Na₂TiO₃ và (+) được ký hiệu là pic của pha tinh thể TiO₂ anata). Mẫu gC_3N_4 cho thấy là có 2 pic nhiễu xạ ở vị trí góc nhiễu xạ $2\theta \approx 13,2^{\circ}$ và 27,3° tương ứng với các họ mặt mạng tinh thể (100) và (002) của pha tinh thể cacbon nitrua gC₃N₄ [1-4]. Ngoài ra, trên hình phổ XRD của mẫu gC₃N₄ - Cu₂O không thấy có pic đặc trưng của Cu, CuO. Mẫu gC₃N₄ -TNTs/TiO₂ không có pic đặc trưng của Ti hay Na. Điều này cho thấy là mẫu nanocomposit gC₃N₄ - Cu₂O chế tao được là đơn pha tinh thể Cu₂O. Mẫu nanocomposit gC₃N₄ - TNTs/TiO₂ chế tao được tồn tai ở hai pha tinh thể Na₂TiO₃ (TNTs)và TiO₂ dạng anata. Trên hình phổ XRD của mỗi mẫu nanocomposit gC3N4-Cu2O và gC3N4 - TNTs/TiO2 đều không thấy xuất hiện pic đặc trưng của pha tinh thể gC_3N_4 . Điều này có thể do lượng pha tạp của gC₃N₄ trong mỗi mẫu nanocomposit vẫn còn là nhỏ (10 – 15 % mol). Mặt khác, Các pic nhiễu xạ đặc trưng của các mẫu nanocomposit gC₃N₄ - Cu₂O, gC₃N₄ - TNTs/TiO₂ chế tao đều được mở rộng. Điều này cho việc xác định là các mẫu vật liệu chế tạo có kích thước cỡ nano-mét.

Hình 2. Phổ XRD của các mẫu nanocomposit gC_3N_4 - Cu_2O , gC_3N_4 - $TNTs/TiO_2$ và mẫu nano gC_3N_4 .

Kích thước tinh thể trung bình của các mẫu vật liệu nanocomposit gC_3N_4 - Cu_2O , gC_3N_4 - $TNTs/TiO_2$ và mẫu vật liệu nano gC_3N_4 được tính toán áp dụng theo công thức Scherrer [5-6]: $D = K\lambda/\beta cos\theta$ (1). Trong đó, D là kích thước tinh thể trung bình, K là hệ số (K = 0,9), λ là bước sóng của tia X ($\lambda = 1,5406$ Å), β là độ bán mở rộng của pic nhiễu xạ có cường độ mạnh nhất, θ là góc nhiễu xạ. Tính được kích thước tinh thể trung bình của các mẫu vật liệu nanocomposit gC_3N_4 - Cu_2O , gC_3N_4 - $TNTs/TiO_2$ và mẫu vật liệu nano gC_3N_4 tương ứng là 12,5 nm, 9,6 nm và 10,35 nm.

3.2. Hình thái học vật liệu

+ Hiển vi điện tử quét SEM: Hình chụp hiển vi điện tử quét (SEM) của các mẫu vật liệu nanocomposit gC3N4 - Cu2O và gC3N4 -TNTs/TiO2 được thể hiện lần lượt ở Hình 3(a,b). Trên hình SEM (Hình 3(a,b)) của mỗi mẫu nanocomposit chế tạo có hình chèn nhỏ ở góc phải phía trên mỗi hình là hình SEM của mẫu cacbon nitrua gC_3N_4 . Quan sát hình SEM của mẫu gC_3N_4 cho thấy là có cấu trúc dang lớp (kiểu lớp bông) giống với cấu trúc dang lớp graphit, có kích thước lớp cỡ 500 - 1000 nano-mét [1 - 4]. Hình SEM của mẫu gC₃N₄ - Cu₂O (Hình 3a) cho thấy là có các tinh thể hình bát diện (octahedra) của Cu₂O với sự phân bố kích thước hat tinh thể tương đối đồng đều, kích thước hạt tinh thể sắp xếp cỡ khoảng 300 - 400 nm. Hình SEM của mẫu gC₃N₄ - TNTs/TiO₂ (Hình 3b) cho thấy là có cấu trúc tinh thể dang thanh dài, mảnh với kích thước dài của thanh cỡ khoảng 5 - 10 µm, kích thước rông của thanh cỡ 80 - 100 nm. Trong hình SEM của các mẫu nanocomposit gC₃N₄ - Cu₂O và gC₃N₄ - TNTs/TiO₂ cho quan sát thấy hình ảnh tinh thể octahedra $\rm Cu_2O$ hoặc tinh thể dạng thanh nano TNTs/TiO2 đều có xen lẫn tinh thể dạng lớp bông mờ của nano gC₃N₄. Điều này cho thấy là đã có sự pha tạp của gC₃N₄ vào vật liệu nanocomposit gC3N4 - Cu2O và gC3N4 - TNTs/TiO2. Với sự điều chỉnh hình dáng hạt tinh thể của vật liệu nanocomposit từ dạng octahedra (khi cho gC_3N_4 kết hợp với tinh thể Cu_2O) hoặc dạng thanh nano (khi cho gC₃N₄ kết hợp với tinh thể TNTs/TiO₂) - đây là mong muốn trong chế tạo vật liệu với sự điều chỉnh được dạng hình dáng khác nhau của tinh thể vật liệu để đạt được những ứng dụng đa dạng sản phẩm trong vật liêu công nghệ và vật liêu thương mai [2 - 11].

+ Phổ tán xạ năng lượng EDX: Hình 4(a,b,c) là phổ tán xạ năng lượng của các mẫu gC_3N_4 (a), gC_3N_4 - Cu_2O (b) và gC_3N_4 - $TNTs/TiO_2$ (c). Trên hình phổ EDX của mẫu gC_3N_4 (Hình 4a) cho thấy là có pic của nguyên tố C và N. Trên hình phổ EDX của mẫu gC_3N_4 - Cu_2O (Hình 4b) cho thấy là ngoài pic của các nguyên tố C, N thì còn có thêm pic của nguyên tố Cu và O. Trên hình phổ EDX của mẫu gC_3N_4 - $TNTs/TiO_2$ (Hình 4c) cho thấy là ngoài pic của các nguyên tố C, N thì còn có thêm pic của nguyên tố Cu và O. Trên hình phổ EDX của mẫu gC_3N_4 - $TNTs/TiO_2$ (Hình 4c) cho thấy là ngoài pic của các nguyên tố C, N thì có thêm pic của các nguyên tố Na, Ti và O. Như vậy, trong mẫu nanocomposit gC_3N_4 - Cu_2O là có đủ thành phần các nguyên tố của TiO₂, Na_2TiO_3 (TNTs) và của vật liệu pha tạp gC_3N_4 .

Hình 3. Hiển vi điện tử quét của các mẫu nanocomposit gC₃N₄ - Cu₂O (a) và gC₃N₄ - TNTs/TiO₂ (b).

+ Phổ tán xạ năng lượng EDX: Hình 4(a,b,c) là phổ tán xạ năng lượng của các mẫu gC_3N_4 (a), gC_3N_4 - Cu_2O (b) và gC_3N_4 - $TNTs/TiO_2$ (c). Trên hình phổ EDX của mẫu gC_3N_4 (Hình 4a) cho thấy là có pic của nguyên tố C và N. Trên hình phổ EDX của mẫu gC_3N_4 - Cu_2O (Hình 4b) cho thấy là ngoài pic của các nguyên tố C, N thì còn có thêm pic của nguyên tố Cu và O. Trên hình phổ EDX của mẫu gC_3N_4 - $TNTs/TiO_2$ (Hình 4c) cho thấy là ngoài pic của các nguyên tố C, N thì còn có thêm pic của nguyên tố Cu và O. Trên hình phổ EDX của mẫu gC_3N_4 - $TNTs/TiO_2$ (Hình 4c) cho thấy là ngoài pic của các nguyên tố C, N thì có thêm pic của các nguyên tố Na, Ti và O. Như vậy, trong mẫu nanocomposit gC_3N_4 - Cu_2O là có đủ thành phần các nguyên tố của TiO₂, Na_2TiO_3 (TNTs) và của vật liệu pha tạp gC_3N_4 .

Hình 4. Phổ tán xạ năng lượng EDX của các mẫu g C_3N_4 (a), g C_3N_4 - Cu_2O (b) và g C_3N_4 - TNTs/TiO₂ (c).

3.3. Đặc tính quang của vật liệu

Phổ hấp thụ UV-vis rắn của các mẫu vật liệu nanocomposit gC₃N₄ - Cu₂O, gC₃N₄ - TNTs/TiO₂ và mẫu vật liệu nano gC₃N₄ được thể hiện trên Hình 5. Trên hình phổ hấp thụ UV-vis cho thấy: mẫu nanocomposit gC₃N₄ - Cu₂O có bờ hấp thụ mở rộng nhiều trong vùng ánh sáng nhìn thấy với bước sóng $\lambda \approx 700$ - 730 nm; mẫu nanocomposit gC₃N₄ - TNTs/TiO₂ có bờ hấp thụ ở vùng bước sóng $\lambda \approx$ 400 - 420 nm; mẫu nano gC₃N₄ có bờ hấp thụ ở vùng bước sóng $\lambda \approx$ 450 nm. So sánh với vật liệu nano đơn pha ở các nghiên cứu trước của nhóm và các tài liệu tham khảo thì: vật liệu nano Cu₂O đơn pha có bờ hấp thu ở dải rông của vùng ánh sáng nhìn thấy $\lambda \approx 700$ - 800 nm [5 - 7]. Vật liệu nano TNTs, TiO2 anata đơn pha có bờ hấp thụ trong vùng bước sóng ánh sáng tử ngoại gần $\lambda \leq 380$ nm [6,7,10]. Vật liệu gC₃N₄ có bờ hấp thụ ở vùng xung quang bước sóng $\lambda \approx 450$ nm [1 - 4]. Điều này cho nhân xét là đã có sư tác đông của yếu tố pha tap gC_3N_4 dến vật liêu Cu₂O và TNTs/TiO₂. Bờ hấp thu của mẫu nanocomposit gC₃N₄ - Cu₂O được thu hẹp hơn trong vùng ánh sáng nhìn thấy so với mẫu nano Cu₂O đơn pha (nhưng vẫn nằm trong vùng ánh sáng đỏ). Bờ hấp thụ của mẫu nanocomposit gC₃N₄ - TNTs/TiO₂ được mở rộng hơn (trong dải bước sóng xanh lục nhạt) so với mẫu nano đơn pha TNTs, TiO₂.

Năng lượng vùng cấm quang (Eg) của các mẫu vật liệu nanocomposit gC₃N₄ - Cu₂O, gC₃N₄ - TNTs/TiO₂ và mẫu vật liệu nano gC₃N₄ được xác định theo phương pháp Tauc [3,6 - 7]. Theo phương pháp này, giữa độ hấp thụ và năng lượng có mối liên hệ được biểu thị theo phương trình: $(\alpha h\nu)^2 = B(h\nu - Eg)$ (2). Trong đó: α là hệ số hấp thụ được xác định từ phổ hấp thụ UV-vis rắn của mẫu vật liệu; h là hằng số Plăng (h = 4,135.10⁻¹⁵ eV.s); ν là tần số sóng ánh sáng (ν = C/ λ , C - vận tốc ánh sáng (3.10⁸ m/s), λ - bước sáng ánh sáng); B là hằng số. Hình 6 là đồ thị biểu thị mối quan hệ của $(\alpha h\nu)^2$ và năng lương hy dựa theo phương trình Taus của các mẫu vật liêu nanocomposit gC₃N₄ - Cu₂O, gC₃N₄ - TNTs/TiO₂ và mẫu vật liệu nano gC₃N₄. Năng lương vùng cấm quang Eg được xác đinh bằng cách ngoại suy từ đồ thị $(\alpha h\nu)^2$ -hv tại điểm $(\alpha h\nu)^2 = 0$. Bảng 1 trình bày giá tri năng lương vùng cấm quang Eg của các mẫu vật liêu nanocomposit gC₃N₄ - Cu₂O, gC₃N₄ - TNTs/TiO₂, gC₃N₄ và các mẫu vật liệu nano đơn pha Cu2O, TiO2 (ở nghiên cứu trước của chúng tôi) và các mẫu tương ứng theo tài liệu tham khảo.

Mẫu	gC ₃ N ₄ -Cu ₂ O	gC ₃ N ₄ - TNTs/TiO ₂	gC_3N_4	Cu ₂ O [8,9]	Cu ₂ O [2,5]	TiO ₂ anata [6,7]	TiO ₂ anata [10]	Na ₂ TiO ₃ [12]	
Eg (eV)	2,01	3,39	2,73	2,00	2,17	3,2	3,26	3,61	
$(10^{+})_{00} = (10^{+})_{00$									

Bảng 1. Năng lượng vùng cấm quang Eg của các mẫu vật liệu nanocomposit gC₃N₄ - Cu₂O, gC₃N₄ - TNTs/TiO₂, gC₃N₄ và các mẫu vật liệu tham khảo.

Hình 5. Phổ hấp thụ UV-Vis rắn của các mẫu nanocomposit gC_3N_4 - Cu_2O , gC_3N_4 - $TNTs/TiO_2$ và mẫu nano gC_3N_4

Hình 6. Đồ thị biểu thị mối quan hệ của $(\alpha h \nu)^2$ và h ν của các mẫu gC₃N₄ - Cu₂O, gC₃N₄ - TNTs/TiO₂ và gC₃N₄

Theo kết quả thể hiện ở Bảng 1 cho thấy, giá trị năng lượng vùng cấm Eg của mẫu nanocomposit gC_3N_4 - Cu_2O , gC_3N_4 - $TNTs/TiO_2$ xác định được là nằm trung gian giữa giá trị năng lượng vùng cấm của vật liệu nano gC_3N_4 và vật liệu đơn pha Cu_2O , TNTs, TiO_2 tương ứng.

4. Kết luận

Vật liệu nanocomposit gC3N4 - Cu2O, gC3N4 - TNTs/TiO2 đã được chế tạo thành công theo phương pháp thủy nhiệt. Các vật liệu gC₃N₄ - Cu₂O, gC₃N₄ - TNTs/TiO₂ và gC₃N₄ đều có cấu trúc nano - mét với kích thước tinh thể tính theo phương trình Scherrer lần lượt là: 12,5 nm, 9,6 nm và 10,35 nm. Mẫu nanocomposit gC3N4 - Cu2O có kết tinh tinh thể hình bát diên (octahedra) giống với tinh thể nano Cu₂O đơn pha với sự phân bố kích thước hat tương đối đồng đều, kích thước hat tinh thể ~ 300 - 400 nm. Mẫu nanocomposit gC_3N_4 -TNTs/TiO₂ có kết tinh tinh thể dang thanh nano với kích thước dài của thanh ~5-10 µm, kích thước rộng của thanh ~ 80 - 100 nm. Trên bề mặt các hạt tinh thể của nanocomposit gC₃N₄ - Cu₂O, gC₃N₄ -TNTs/TiO₂ đều có xen lẫn tinh thể dạng lớp bông mờ của nano gC₃N₄. Các mẫu vật liệu nanocomposit chế tao đã có sự tác động của vật liệu pha tạp gC₃N₄ làm thay đổi đặc tính của vật liệu nanocomposit so với vật liêu đơn pha Cu₂O và TNTs, TiO₂. Bờ hấp thụ của mẫu nanocomposit gC₃N₄-Cu₂O có $\lambda \approx 700$ - 730 nm (thuộc vùng ánh sáng đỏ) được xác định là mở rộng hơn so với bờ hấp thụ của gC₃N₄ ($\lambda \approx 450$ nm) và thu hẹp hơn so với mẫu nano đơn pha Cu₂O. Bờ hấp thụ của mẫu nanocomposit gC₃N₄ - TNTs/TiO₂ được mở rộng hơn ($\lambda \approx 400$ - 420 nm - thuộc dải bước sóng xanh lục nhạt) và nằm trung gian giữa độ mở rộng bờ hấp thụ của vật liệu nano gC₃N₄ và bờ hấp thụ của vật liệu nano đơn pha TNTs, TiO₂ ($\lambda \leq 380$ nm). Giá trị năng lượng vùng cấm quang Eg của các mẫu nanocomposit gC₃N₄ - Cu₂O và gC₃N₄ - TNTs/TiO₂ lần lượt là 2,01 eV và 3,39 eV, được xác định là giá trị trung gian giữa năng lượng vùng cấm của vật liệu đơn pha Cu₂O, TNTs, TiO₂ (tương ứng Eg \approx 2,17 eV, 3,61 eV, 3,2 eV) và vật liệu pha tạp nano gC₃N₄ (Eg \approx 2,73 eV).

Lời cảm ơn. Công trình này được thực hiện với sự hỗ trợ về kinh phí của đề tài cấp trường T2018-PC-233, Trường Đại học Bách Khoa Hà Nội.

Tài liệu tham khảo

- [1]. Aiwu Wang, Chundong Wang, Li Fu, Winnie Wong-Ng, Yucheng Lan. This near process structure and application is based on carbon nitride graphite in catalysts, sensors, imaging and LEDs, Nano-Micro Letter 47(21 pages) (2017). Change: 10.1007/s40820-017-0148-2.
- [2]. Biyu Peng, Shengsen Zhang, Siyuan Yang, Hongjuan Wang, Hao Yu, Shanqing Zhang, Feng Peng. Synthesis and characterization of g-C₃N₄/Cu₂O composite catalyst with enhanced photocatalytic activity under visible light irradiation, Materials Research Bulletin, 56 (19-24) (2014). <u>https://doi.org/10.1016/j.materresbull.2014.04.042</u>.

- [3]. Kang Hu, Ruiqi Li, Chenlu Ye, Anqi Wang, Weiqi Wei, Di Hu, Rongliang Qiu, Kai Yan. Facile synthesis of Z-scheme composite of TiO₂ nanorod/g-C₃N₄ nanosheet efficient for photocatalytic degradation of ciprofloxacin, Journal of Cleaner Production, JCLP 120055 1-31 (2020). https://doi.org/10.1016/j.jclepro.2020.120055.
- [5]. Sachin S. Sawant, Ashok D. Bhagwat, Chandrashekhar M. Mahajan. Synthesis of Cuprous Oxide (Cu₂O) Nanoparticles -a Review, Journal of Nano and Electronic Physics, 8(1) 01035(5pp) (2016). Doi: 2077-6772/2016/8(1)01035(5).
- [6]. Yulong Liao, Peng Deng, Xiaoyi Wang, Dainan Zhang, Faming, Qinghui Yang, Huaiwu Zhang and Zhiyong Zhong. A Facile Method for Preparation of Cu₂O-TiO₂ NTA Heterojunction with Visible-Photocatalytic Activity, Nanoscale Research Letters, 13:221 (1-8) (2018). https://doi.org/10.1186/s11671-018-2637-8.
- [7]. Lingmei Liu, Weiyi Yang, Wuzhu Sun, Qi Li and Jian Ku Shang. Creation of Cu₂O@TiO₂ Composite Photocatalysts with p-n Heterojunctions Formed on Exposed Cu₂O Facets, Their Energy Band Alignment Study, and Their Enhanced Photocatalytic Activity under Visible Light Illumination, ACS Applied Materials & Interfaces, 05861c.R1 (1-35) (2014). Doi:10.1021/am505861c.
- [8]. Nguyễn Thị Tuyết Mai, Tạ Ngọc Dũng, Huỳnh Đăng Chính, Lưu Thị Lan Anh. Chế tạo vật liệu hạt nano Cu₂O bằng phương pháp hóa học ướt đi từ các tiền chất "xanh" CuSO₄.5H₂O và Na₂SO₃ và khảo sát các đặc tính của vật liệu, Tạp chí Công nghiệp hóa chất, 8 40-45 (2020).
- [9]. Nguyễn Thị Tuyết Mai, Đặng Thị Minh Huệ, Nguyễn Thị Lan, Trần Thị Thu Huyền, Nguyễn Kim Ngà, Huỳnh Đăng Chính, Tạ Ngọc Dũng, Nguyễn Công Tú, Trịnh Xuân Anh, Lưu Thị Lan Anh. Nghiên cứu chế tạo và khảo sát ảnh hưởng của loại nguyên liệu tiền chất muối đồng với các gốc anion khác nhau SO₄², Cl⁻, CH₃COO⁻, NO₃⁻ đến đặc tính cấu trúc và tính chất xúc tác quang phân hủy chất màu metyl dam cam của các hạt nano octahedral Cu₂O, Tạp chí Xúc tác và Hấp phụ, 9(3) (2020) 112-117.
- [10]. Lê Tùng Lâm, Nghiên cứu chế tạo bột nano TiO₂ pha tạp ion Co(II), Fe(III) bằng phương pháp thủy nhiệt và khảo sát khả năng xúc tác quang phân hủy xanh mêtylen dưới chiếu xạ ánh sáng từ ngoại và ánh sáng nhìn thấy, Đồ án tốt nghiệp, Trường Đại học Bách Khoa Hà Nội (2018).
- [11]. Shufeng Song, Masashi Kotobuki,YingqianChen, Sergei Manzhos, ChaoheXu, Ning Hu & Li Lu. Na-rich layered Na₂Ti_{1-x}Cr_xO_{3-x/2} (x = 0, 0.06): Na-ion battery cathode materials with high capacity and long cycle life, Scientific Reports, 7: 373 (1-10) (2017). Doi:10.1038/s41598-017-00346-x.
- [12]. Fancheng Meng, Yahui Liu, Lina Wang, Desheng Chen, Hongxin Zhao, Weijing Wang, Tao Qi. Structural, vibrational, and thermodynamic properties of γ-Na₂TiO₃: first-principles and experimental studies, Ceramics International, CERI16571 (1-33) (2017). <u>https://doi.org/10.1016/j.ceramint.2017.10.152</u>.