
ISSN: 2734-9438
Website: www.jomc.vn
Investigating chillers' energy consumption and energy saving analysis of a primary school in Ho Chi Minh city, Vietnam
Abstract
Air conditioning and chillers contributed much of the total building energy consumption. In this study, we investigated the impacts of the chillers’ COP, the indoor air temperature, the air distribution approach, the load distribution scheme of the chiller system and the outdoor air temperature that influence the energy consumption of the sample primary school-installed water-cooled chiller system in Ho Chi Minh City, Vietnam. The EUI values of the sample building's installed water-cooled chiller system ranged from 115.25 kWh/m2 to 155.55 kWh/m2. While the energy consumption of the water-cooled chiller system showed a positive correlation with the outdoor air temperature, it expressed a negative relationship with the indoor air temperature and the chiller’s COP. Generally, the water-cooled chiller system consumes less power with the VAV system than the CAV system and less power under the optimal load distribution scheme than the uniform load distribution scheme. The total annual energy-saving of the chiller system depends on the choice of chillers’ COP, load distribution scheme, air distribution approach, and the set point of indoor air temperature, ranging from 7.43% to 41.62%.
References
- N. Đ. L. Nguyễn Công Thịnh, “Giải pháp phát triển công trình cân bằng năng lượng ở một số quốc gia trên thế giới và khuyến nghị cho Việt Nam,” Tạp chí khoa học công nghệ xây dựng, Đại học Xây dựng Hà Nội, vol. 1, no. 17, pp. 91–100, 2023.
- B. T. Hieu, “Nghiên cứu các mô hình mô phỏng năng lượng: phân loại, ứng dụng kỹ thuật, xu hướng nghiên cứu và phát triển,” Tạp chí Vật liệu và xây dựng, vol. 2, no. 14, pp. 125–133, 2024.
- O. Ahmed and T. Al-Zubaydi, “Building Models Design And Energy Simulation With Google Sketchup And,” J. Adv. Sci. Eng. Res., vol. 3, no. 4, pp. 318–333, 2013.
- A. A. Chowdhury, M. G. Rasul, and M. M. K. Khan, “Modelling and simulation of building energy consumption: A case study on an institutional building in central queensland, australia,” IBPSA 2007 - Int. Build. Perform. Simul. Assoc. 2007, no. Krarti 2000, pp. 1916–1923, 2007.
- S. A. Klein, W. A. Beckman, and J. A. Duffie, “Trnysys - a Transient Simulation Program.,” ASHRAE Trans., vol. 82, no. pt 1, pp. 623–633, 1976.
- D. Yan, J. Xia, W. Tang, F. Song, X. Zhang, and Y. Jiang, “DeST — An integrated building simulation toolkit Part I: Fundamentals,” Build. Simul., vol. 1, no. 2, pp. 95–110, 2008, doi: 10.1007/s12273-008-8118-8.
- M. Wetter, “A modelica-based model library for building energy and control systems,” IBPSA 2009 - Int. Build. Perform. Simul. Assoc. 2009, no. June, pp. 652–659, 2009.
- C. Fan et al., “Open-source Modelica models for the control performance simulation of chiller plants with water-side economizer,” Appl. Energy, vol. 299, p. 117337, Oct. 2021, doi: 10.1016/j.apenergy.2021.117337.
- K. F. Fong, V. I. Hanby, and T. T. Chow, “HVAC system optimization for energy management by evolutionary programming,” Energy Build., vol. 38, no. 3, pp. 220–231, Mar. 2006, doi: 10.1016/j.enbuild.2005.05.008.
- M. Ali, V. Vukovic, M. H. Sahir, and G. Fontanella, “Energy analysis of chilled water system configurations using simulation-based optimization,” Energy Build., vol. 59, pp. 111–122, Apr. 2013, doi: 10.1016/j.enbuild.2012.12.011.
- A. Hasan, M. Vuolle, and K. Sirén, “Minimisation of life cycle cost of a detached house using combined simulation and optimisation,” Build. Environ., vol. 43, no. 12, pp. 2022–2034, Dec. 2008, doi: 10.1016/j.buildenv.2007.12.003.
- Y. Pan et al., “Advances in Applied Energy Building energy simulation and its application for building performance optimization : A review of methods , tools , and case studies,” Adv. Appl. Energy, vol. 10, no. March, p. 100135, 2023, doi: 10.1016/j.adapen.2023.100135.
- J. Yang, M. Santamouris, S. E. Lee, and C. Deb, “Energy performance model development and occupancy number identification of institutional buildings,” Energy Build., vol. 123, pp. 192–204, 2016, doi: 10.1016/j.enbuild.2015.12.018.
- J. Li, W. Xu, P. Cui, B. Qiao, S. Wu, and C. Zhao, “Research on a Systematical Design Method for Nearly Zero-Energy Buildings,” Sustainability, vol. 11, no. 24, p. 7032, Dec. 2019, doi: 10.3390/su11247032.
- F. Nocera, A. Lo Faro, V. Costanzo, and C. Raciti, “Daylight Performance of Classrooms in a Mediterranean School Heritage Building,” Sustainability, vol. 10, no. 10, p. 3705, Oct. 2018, doi: 10.3390/su10103705.
- C. Tam, Y. Zhao, Z. Liao, and L. Zhao, “Mitigation Strategies for Overheating and High Carbon Dioxide Concentration within Institutional Buildings: A Case Study in Toronto, Canada,” Buildings, vol. 10, no. 7, p. 124, Jul. 2020, doi: 10.3390/buildings10070124.
- R. Kalaimani, M. Jain, S. Keshav, and C. Rosenberg, “On the interaction between personal comfort systems and centralized HVAC systems in office buildings,” Adv. Build. Energy Res., vol. 14, no. 1, pp. 129–157, 2020, doi: 10.1080/17512549.2018.1505654.
- D. Kim, S. J. Cox, H. Cho, and P. Im, “Model calibration of a variable refrigerant flow system with a dedicated outdoor air system: A case study,” Energy Build., vol. 158, pp. 884–896, Jan. 2018, doi: 10.1016/j.enbuild.2017.10.049.
- Y. M. Li and J. Y. Wu, “Energy simulation and analysis of the heat recovery variable refrigerant flow system in winter,” Energy Build., vol. 42, no. 7, pp. 1093–1099, Jul. 2010, doi: 10.1016/j.enbuild.2010.01.023.
- D. Y. Park, G. Yun, and K. S. Kim, “Experimental evaluation and simulation of a variable refrigerant- flow (VRF) air-conditioning system with outdoor air processing unit,” Energy Build., vol. 146, pp. 122–140, Jul. 2017, doi: 10.1016/j.enbuild.2017.04.026.
- T. E. Jiru, “Combining HVAC energy conservation measures to achieve energy savings over standard requirements,” Energy Build., vol. 73, pp. 171–175, 2014, doi: 10.1016/j.enbuild.2014.01.009.
- F. W. Yu, K. T. Chan, R. K. Y. Sit, and J. Yang, “Energy simulation of sustainable air-cooled chiller system for commercial buildings under climate change,” Energy Build., vol. 64, pp. 162–171, Sep. 2013, doi: 10.1016/j.enbuild.2013.04.027.
- T. A. T. Nguyen Anh Tuan, “The impact of climate change on the design of commercial and office building envelope in Vietnam in the period 2050-2080,” J. Sci. Technol. Univ. Da Nang, vol. 19, no. 5.2, pp. 6–10, 2021.
- P. A. D. Ngo ngoc Tri, Nguyen Huu Quang Minh, Nguyen Thanh Lam, Huynh Tien Luc, “PHÂN TÍCH NĂNG LƯỢNG TRONG TÒA NHÀ SỬ DỤNG MÔ HÌNH THÔNG TIN CÔNG TRÌNH HƯỚNG TỚI SỰ BỀN VỮNG.,” J. Sci. Technol. Univ. Da Nang, vol. 18, no. 9, pp. 37–40, 2020.
- B. T. Hieu, “Investigating the impacts of passive design solutions on building energy consumption using OpenStudio: Case study of a primary school, Hanoi, Vietnam,” J. Sci. Technol. Civ. Eng. - HUCE, vol. 18, no. 4, pp. 123–131, Dec. 2024, doi: 10.31814/stce.huce2024-18(4)-10.
- B. T. Hiếu, “Integration of variable refrigerant flow system and energy recovery ventilator in different construction climate zones in Vietnam: Case study of a primary school,” J. Sci. Technol. Civ. Eng. - HUCE, vol. 19, no. 1, pp. 109–119, 2025.
- J. C. Lam, “Energy analysis of commercial buildings in subtropical climates,” Build. Environ., vol. 35, no. 1, pp. 19–26, Jan. 2000, doi: 10.1016/S0360-1323(98)00067-5.
- R. Saidur, M. Hasanuzzaman, T. M. I. Mahlia, N. A. Rahim, and H. A. Mohammed, “Chillers energy consumption, energy savings and emission analysis in an institutional buildings,” Energy, vol. 36, no. 8, pp. 5233–5238, Aug. 2011, doi: 10.1016/j.energy.2011.06.027.
- R. Saidur, “Energy consumption, energy savings, and emission analysis in Malaysian office buildings,” Energy Policy, vol. 37, no. 10, pp. 4104–4113, Oct. 2009, doi: 10.1016/j.enpol.2009.04.052.
- H.-M. S. of Vietnam, “World Weather Information Service.”
- AHSRAE, “ANSI/ASHRAE/IES standard 90.1-2010,” 2010.
- BocaPCM, “Discover probably the BEST chiller system energy efficiency.” [Online]. Available: https://pcm-tes.com/chiller-system-energy-efficiency/
- Y. Lin, T. Huang, W. Yang, X. Hu, and C. Li, “A Review on the Impact of Outdoor Environment on Indoor Thermal Environment,” Buildings, vol. 13, no. 10, pp. 1–26, 2023, doi: 10.3390/buildings13102600.
- Y. Wang, J. Kuckelkorn, F.-Y. Zhao, D. Liu, A. Kirschbaum, and J.-L. Zhang, “Evaluation on classroom thermal comfort and energy performance of passive school building by optimizing HVAC control systems,” Build. Environ., vol. 89, pp. 86–106, Jul. 2015, doi: 10.1016/j.buildenv.2015.02.023.
- Z. Arifin, F. Fachruroji, and M. Huda, “Increasing performance of chiller systems in high-rise buildings by load optimization,” Int. J. Appl. Power Eng., vol. 13, no. 1, p. 113, Mar. 2024, doi: 10.11591/ijape.v13.i1.pp113-122.
- L. Brackney, A. Parker, D. Macumber, and K. Benne, Building Energy Modeling with OpenStudio. Cham: Springer International Publishing, 2018. doi: 10.1007/978-3-319-77809-9.
- M. H. Yusof, S. M. Muslim, M. F. Suhaimi, and M. F. Basrawi, “The Effect of Outdoor Temperature on the Performance of a Split-Unit Type Air Conditioner Using R22 Refrigerant,” MATEC Web Conf., vol. 225, p. 02012, Nov. 2018, doi: 10.1051/matecconf/201822502012.
- C.-M. Lin, H.-Y. Liu, K.-Y. Tseng, and S.-F. Lin, “Heating, Ventilation, and Air Conditioning System Optimization Control Strategy Involving Fan Coil Unit Temperature Control,” Appl. Sci., vol. 9, no. 11, p. 2391, Jun. 2019, doi: 10.3390/app9112391.