ISSN: 2734-9438
Website: www.jomc.vn
Influence of modulus, thickness and material type on the mechanical behavior of pavement structures
Abstract
This study investigates the effects of elastic modulus, layer thickness and material type on pavement structures using simulations with the Alizé-LCPC software. Two pavement types were analyzed: (i) flexible and (ii) high-grade pavements. The evaluated indicators include tensile strain at the bottom of the asphalt layer (εT), vertical strain at the top of the subgrade (εZ) and surface deflection (D0). The results indicate a nonlinear relationship between asphalt layer thickness and tensile strain, with a “critical thickness zone” where εT reaches its maximum before decreasing as the layer becomes thicker. Asphalt thickness strongly influences all three indicators, while its elastic modulus primarily governs εT. The unbound granular base mainly affects subgrade strain but has limited impact on surface deflection and tensile strain. Pavements with only unbound granular bases show low structural efficiency, whereas high-modulus base layers in high-grade pavements substantially reduce εT, εZ and D0, enhancing overall structural strength and stability.
References
- Y. H. Huang, Pavement Analysis and Design, 2nd ed. Upper Saddle River, NJ, USA: Pearson Prentice Hall, 2004.
- Z. Selsal, A. Karakas, and B. Sayin, “Effect of pavement thickness on stress distribution in asphalt pavements under traffic loads,” Case Studies in Construction Materials, vol. 16, p. e01107, 2022. doi: 10.1016/j.cscm.2022.e01107.
- Z. Suo, W. G. Wong, X. H. Luo, and B. Tian, “Evaluation of fatigue crack behavior in asphalt concrete pavements with different polymer modifiers,” Construction and Building Materials, vol. 27, no. 1, pp. 117–125, 2012. doi: 10.1016/j.conbuildmat.2011.08.017.
- J. B. Sousa, J. C. Pais, M. Prates, R. Barros, P. Langlois, and A.-M. Leclerc, “Effect of aggregate gradation on fatigue life of asphalt concrete mixes,” Transportation Research Record: Journal of the Transportation Research Board, vol. 1630, no. 1, pp. 62–68, 1998. doi: 10.3141/1630-08.
- G. A. Shafabakhsh, M. Motamedi, and A. Famili, “Influence of asphalt concrete thickness on settlement of flexible pavements,” Electronic Journal of Geotechnical Engineering, vol. 18, pp. 473–483, 2013.
- M. Elshaer and J. S. Daniel, “Impact of pavement layer properties on the structural performance of inundated flexible pavements,” Transportation Geotechnics, vol. 16, pp. 11–20, 2018. doi: 10.1016/j.trgeo.2018.06.002.
- M. A. S. Hadi and M. H. Al-Sherrawi, “The influence of base layer thickness in flexible pavements,” Engineering, Technology & Applied Science Research, vol. 11, no. 6, pp. 7904–7909, 2021. doi: 10.48084/etasr.4573.
- C. Deng, Y. Jiang, Z. Han, H. Lin, and J. Fan, “Effects of paving technology, pavement materials, and structures on the fatigue property of double-layer pavements,” Advances in Materials Science and Engineering, Article ID 5038370, 2020. doi: 10.1155/2020/5038370.
- F. Khodary, H. Akram, and N. Mashaan, “Behaviour of different pavement types under traffic loads using finite element modelling,” International Journal of Civil Engineering and Technology, vol. 11, no. 11, pp. 40–48, 2020.
- D. L. Castelló, T. G. Segura, L. M. Domingo, A. S. Benlloch, and E. Pellicer, “Influence of pavement structure, traffic, and weather on urban flexible pavement deterioration,” Sustainability, vol. 12, no. 22, p. 9717, 2020. doi: 10.3390/su12229717.
- T. S. Nguyễn and P. C. Thăng, “Tính toán lựa chọn chiều dày hợp lý lớp bê tông nhựa theo chỉ tiêu độ bền cắt trượt trong kết cấu áo đường mềm đường ô tô,” Tạp chí Giao thông Vận tải, 2017.
- P. V. Hoàng and P. C. Thăng, “Tính toán lựa chọn chiều dày hợp lý lớp bê tông nhựa theo chỉ tiêu độ bền mỏi trong kết cấu áo đường mềm đường ô tô,” Tạp chí Giao thông Vận tải, 2016.
- P. H. Khang, N. B. Tùng, and N. Đ. Chung, “Ứng dụng phần mềm Abaqus tính ứng suất, biến dạng kết cấu mặt đường mềm sân bay,” Tạp chí Giao thông Vận tải, 2017.
- L. V. Phúc and H. C. Đức, “Đánh giá tuổi thọ kết cấu áo đường mềm chịu ảnh hưởng của tải trọng và vận tốc bằng phương pháp cơ học thực nghiệm,” Tạp chí Giao thông Vận tải, 2020.
- SETRA–LCPC, Guide technique: Conception et dimensionnement des structures de chaussées. Paris, France: Laboratoire Central des Ponts et Chaussées, 1994.
- AASHTO, Mechanistic-Empirical Pavement Design Guide (MEPDG). Washington, DC, USA: American Association of State Highway and Transportation Officials, 2008.
- Austroads, Guide to Pavement Technology – Part 2: Pavement Structural Design (AGPT02-17). Sydney, Australia: Austroads Ltd., Dec. 2017.
- M. L. Nguyen, C. Chazallon, M. Sahli, G. Koval, and P. Hornych, “Design of reinforced pavements with glass fiber grids: from laboratory evaluation of the fatigue life to accelerated full-scale test,” in Accelerated Pavement Testing to Transport Infrastructure Innovation, A. Chabot, P. Hornych, J. T. Harvey, and L. G. Loria-Salazar, Eds., Lecture Notes in Civil Engineering, vol. 96. Cham, Switzerland: Springer, 2020, pp. 329–338. doi: 10.1007/978-3-030-55236-7_34.

