ISSN: 2734-9438
Website: www.jomc.vn
Influence of PMMA on properties of polymer electrolyte based on epoxidized deprotenized natural rubber
Abstract
The effect of co-polymer, i.e. poly(methyl methacrylate) (PMMA), and doping salt, i.e. lithium trifluoromethanesulfonate (LiCF3SO3) in
the epoxidized rubber-polymer blends preparation was evaluated. The electrolyte membrane was developed through solution casting
method in the presence of 0-50wt.% of LiCF3SO3. The influence of LiCF3SO3 on chemical interaction and structure, ionic conductivity,
mechanical properties, and glass transition temperature (Tg) of 45%-epoxidized deproteinized natural rubber (EDPNR45)-PMMA (80/20) membrane was determined using several techniques, i.e. F-IR, universal testing machine, multipotentiostat, and DSC. Infrared analysis showed that lithium salts might formed coordination bonds with the oxygen atoms of PMMA and EDPNR45. Ionic conductivity of EDPNR45/LiCF3SO3 blends have been evaluated and the highest conductivity (σ) was obtained in the presence of 35 wt.% of lithium
trifluoromethanesulfonate (1.71 x 10-5S.cm-1). The PMMA content’s effect was also evaluated on the properties of EDPNR45/LiCF3SO3.
The highest conductivity and mechanical strength values at EDPNR45/PMMA ratio of 80/20. Enhancing trend of Tg was obtained with
the increase of PMMA and salt concentration. FTIR characterization also confirms the interaction of salt with EDPNR45 and PMMA.
References
- S.F. Mohammad, N. Zainal, S. Ibrahim, N.S. Mohamed, Conductivity
- Enhancement of (Epoxidized Natural Rubber 50)/Poly(Ethyl Methacrylate)–Ionic Liquid-Ammonium Triflate, Int. J. Electrochem. Sci., 8 (2013) 6145-6153.
- W. Klinklai, Ionic conductivity of highly deproteinized natural rubber having epoxy group mixed with alkali metal salts, Solid State Ion., 168 (2004) 131-136.
- P.G. Bruce, F. Krok, C.A. Vincent, Preparation and characterisation of PEO-Hg(ClO4) complexes and some thoughts on ion transport in polymer electrolytes, Solid State Ion., 27 (1988) 81-88.
- P.V. Wright, Electrical conductivity in ionic complexes of poly(ethylene oxide), Br. Polym. J., 7 (1975) 319-327.
- R. Idris, M.D. Glasse, R.J. Latham, R.G. Linford, W.S. Schlindwein, Polymer electrolytes based on modified natural rubber for use in rechargeable lithium batteries, J. Power Sources, 94 (2001) 206-211.
- W. Klinklai, S. Kawahara, T. Mizumo, M. Yoshizawa, J. Tangpakdee Sakdapipanich, Y. Isono, H. Ohno, Depolymerization and ionic conductivity of enzymatically deproteinized natural rubber having epoxy group, Eur. Polym. J., 39 (2003) 1707-1712.
- G.G. Cameron, J.L. Harvie, M.D. Ingram, G.A. Sorrie, Ion migration in liquid polymer electrolytes, Br. Polym. J., 20 (1988) 199-202.
- G.G. Cameron, M.D. Ingram, K. Sarmouk, Conductivity and viscosity of liquid polymer electrolytes plasticized by propylene carbonate and tetrahydrofuran, Eur. Polym. J., 26 (1990) 1097-1101.
- P. Manaresi, M.C. Bignozzi, F. Pilati, A. Munari, M. Mastragostino, L. Meneghello, A. Chiolle, Polymer electrolytes based on polyesters of thiodipropionic acid: 1. Synthesis, characterization and ionic conductivity measurements, Polymer, 34 (1993) 2422-2426.
- D.J. Bannister, G.R. Davies, I.M. Ward, J.E. McIntyre, Ionic conductivities of poly(methoxy polyethylene glycol monomethacrylate) complexes with LiSO3CH3, Polymer, 25 (1984) 1600-1602.
- A. Vallée, S. Besner, J. Prud'Homme, Comparative study of poly(ethylene oxide) electrolytes made with LiN(CF3SO2)2, LiCF3SO3 and LiClO4: Thermal properties and conductivity behaviour, Electrochim. Acta, 37 (1992) 1579-1583.
- Q. Ali, W. Taweepreda, K. Techato, Preparation and characterization of polymer electrolyte membrane from chloroacetate chitosan/chitosan blended with epoxidized natural rubber, Polym. Test., 82 (2020).
- H. Ismail, S.M. Shaari, N. Othman, The effect of chitosan loading on the curing characteristics, mechanical and morphological properties of chitosan-filled natural rubber (NR), epoxidised natural rubber (ENR) and styrene-butadiene rubber (SBR) compounds, Polym. Test., 30 (2011) 784-790.
- P.T. Nghia, N. Siripitakchai, W. Klinklai, T. Saito, Y. Yamamoto, S. Kawahara, Compatibility of liquid deproteinized natural rubber having epoxy group (LEDPNR)/poly (L-lactide) blend, J. Appl. Polym. Sci., 108 (2008) 393-399.
- J. Garbarczyk, W. Jakubowski, M. Wasiucionek, Effect of selected mobile ions on moisture uptake by beta″ alumina, Solid State Ion., 9-10 (1983) 249-253.
- A. Lauenstein, A. Johansson, J. Tegenfeldt, Water Absorption of the Polymer Electrolyte Systems Pb(CF3SO3)2PEOn and Zn(CF3SO3)2PEOn, J. Electrochem. Soc., 141 (1994).
- W. Klinklai, T. Saito, S. Kawahara, K. Tashiro, Y. Suzuki, J.T. Sakdapipanich, Y. Isono, Hyperdeproteinized natural rubber prepared with urea, J. Appl. Polym. Sci., 93 (2004) 555-559.
- W.D.N. Ayutthaya, S. Poompradub, Thermal and mechanical properties of poly(lactic acid)/natural rubber blend using epoxidized natural rubber and poly(methyl methacrylate) as co-compatibilizers, Macromol. Res., 22 (2014) 686-692.
- J. James, G.V. Thomas, K.P. Pramoda, S. Thomas, Transport behaviour of aromatic solvents through styrene butadiene rubber/poly [methyl methacrylate] (SBR/PMMMA) interpenetrating polymer network (IPN) membranes, Polymer, 116 (2017) 76-88.
- R. Jaratrotkamjorn, C. Khaokong, V. Tanrattanakul, Toughness enhancement of poly(lactic acid) by melt blending with natural rubber, J. Appl. Polym. Sci., 124 (2012) 5027-5036.
- C. Nakason, W. Pechurai, K. Sahakaro, A. Kaesaman, Rheological, mechanical and morphological properties of thermoplastic vulcanizates based on NR-g-PMMA/PMMA blends, Polym. Adv. Technol., 16 (2005) 592-592.
- M.Z. Sharil Fadli, A.L. Famiza, SiO2 Filler as Interface Modifier in PMMA/ENR 50 Electrolytes, Adv. Mat. Res,, 812 (2013) 120-124.
- F. Latif, M. Aziz, N. Katun, A.M.M. Ali, M.Z. Yahya, The role and impact of rubber in poly(methyl methacrylate)/lithium triflate electrolyte, J. Power Sources, 159 (2006) 1401-1404.
- O.S. Dahham, N.N. Zulkepli, Robust interface on ENR-50/TiO2 nanohybrid material based sol-gel technique: Insights into synthesis, characterization and applications in optical, Arab. J. Chem., 13 (2020) 6568-6579.
- S. Kawahara, W. Klinklai, H. Kuroda, Y. Isono, Removal of proteins from natural rubber with urea, Polym. Adv. Technol., 15 (2004) 181-184.
- J.E. Davey, M.J.R. Loadman, A Chemical Demonstration of the Randomness of Epoxidation of Natural Rubber, Br. Polym. J., (1984) 134-138.
- M. Yoshizawa, E. Marwanta, H. Ohno, Preparation and characteristics of natural rubber/poly(ethylene oxide) salt hybrid mixtures as novel polymer electrolytes, Polymer, 41 (2000) 9049-9053.
- J.-F.L. Nest, A. Gandini, H. Cheradame, Crosslinked Polyethers as Media for Ionic Conduction, Br. Polym. J., (1998) 253-268.
- Y. Tominaga, N. Takizawa, H. Ohno, Effect of added salt species on the ionic conductivity of PEO/sulfonamide salt hybrids, Electrochim. Acta, 45 (2000) 1285-1289.
- A.M. El-Hadi, The effect of additives interaction on the miscibility and crystal structure of two immiscible biodegradable polymers, Polímeros, 24 (2014).
- J. Zhao, M.D. Ediger, Y. Sun, L. Yu, Two DSC Glass Transitions in Miscible Blends of Polyisoprene/Poly(4-tert-butylstyrene), Macromolecules, 42 (2009) 6777-6783.
- S.A.M.N. M. S. Su’ait, A. Ahmad, H. Hamzah, M. Y. A. Rahman, Preparation and characterization of blended solid polymer electrolyte 49% poly(methyl methacrylate)-grafted natural rubber:poly(methyl methacrylate)–lithium tetrafluoroborate, J. Solid State Electrochem., (2012) 2275–2282.
- M.D. Glasse, R. Idris, R.J. Latham, R.G. Linford, W.S. Schlindwein, Polymer electrolytes based on modified natural rubber, Solid State Ion., 147 (2002) 289-294.
- K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds Part A: Theory and Applications in Inorganic Chemistry, John Wiley & Sons, Inc., Hoboken, New Jersey, Canada.