##common.pageHeaderLogo.altText##
JOURNAL OF MATERIALS & CONSTRUCTION

ISSN: 2734-9438

Website: www.jomc.vn

Influence of PMMA on properties of polymer electrolyte based on epoxidized deprotenized natural rubber

Nghia Phan Trung , Hang Trinh Thi , Ninh Trinh Hai , Kawahara Seiichi

Abstract

The effect of co-polymer, i.e. poly(methyl methacrylate) (PMMA), and doping salt, i.e. lithium trifluoromethanesulfonate (LiCF3SO3) in
the epoxidized rubber-polymer blends preparation was evaluated. The electrolyte membrane was developed through solution casting
method in the presence of 0-50wt.% of LiCF3SO3. The influence of LiCF3SO3 on chemical interaction and structure, ionic conductivity,
mechanical properties, and glass transition temperature (Tg) of 45%-epoxidized deproteinized natural rubber (EDPNR45)-PMMA (80/20) membrane was determined using several techniques, i.e. F-IR, universal testing machine, multipotentiostat, and DSC. Infrared analysis showed that lithium salts might formed coordination bonds with the oxygen atoms of PMMA and EDPNR45. Ionic conductivity of EDPNR45/LiCF3SO3 blends have been evaluated and the highest conductivity (σ) was obtained in the presence of 35 wt.% of lithium
trifluoromethanesulfonate (1.71 x 10-5S.cm-1). The PMMA content’s effect was also evaluated on the properties of EDPNR45/LiCF3SO3.
The highest conductivity and mechanical strength values at EDPNR45/PMMA ratio of 80/20. Enhancing trend of Tg was obtained with
the increase of PMMA and salt concentration. FTIR characterization also confirms the interaction of salt with EDPNR45 and PMMA.

References

  1. S.F. Mohammad, N. Zainal, S. Ibrahim, N.S. Mohamed, Conductivity
  2. Enhancement of (Epoxidized Natural Rubber 50)/Poly(Ethyl Methacrylate)–Ionic Liquid-Ammonium Triflate, Int. J. Electrochem. Sci., 8 (2013) 6145-6153.
  3. W. Klinklai, Ionic conductivity of highly deproteinized natural rubber having epoxy group mixed with alkali metal salts, Solid State Ion., 168 (2004) 131-136.
  4. P.G. Bruce, F. Krok, C.A. Vincent, Preparation and characterisation of PEO-Hg(ClO4) complexes and some thoughts on ion transport in polymer electrolytes, Solid State Ion., 27 (1988) 81-88.
  5. P.V. Wright, Electrical conductivity in ionic complexes of poly(ethylene oxide), Br. Polym. J., 7 (1975) 319-327.
  6. R. Idris, M.D. Glasse, R.J. Latham, R.G. Linford, W.S. Schlindwein, Polymer electrolytes based on modified natural rubber for use in rechargeable lithium batteries, J. Power Sources, 94 (2001) 206-211.
  7. W. Klinklai, S. Kawahara, T. Mizumo, M. Yoshizawa, J. Tangpakdee Sakdapipanich, Y. Isono, H. Ohno, Depolymerization and ionic conductivity of enzymatically deproteinized natural rubber having epoxy group, Eur. Polym. J., 39 (2003) 1707-1712.
  8. G.G. Cameron, J.L. Harvie, M.D. Ingram, G.A. Sorrie, Ion migration in liquid polymer electrolytes, Br. Polym. J., 20 (1988) 199-202.
  9. G.G. Cameron, M.D. Ingram, K. Sarmouk, Conductivity and viscosity of liquid polymer electrolytes plasticized by propylene carbonate and tetrahydrofuran, Eur. Polym. J., 26 (1990) 1097-1101.
  10. P. Manaresi, M.C. Bignozzi, F. Pilati, A. Munari, M. Mastragostino, L. Meneghello, A. Chiolle, Polymer electrolytes based on polyesters of thiodipropionic acid: 1. Synthesis, characterization and ionic conductivity measurements, Polymer, 34 (1993) 2422-2426.
  11. D.J. Bannister, G.R. Davies, I.M. Ward, J.E. McIntyre, Ionic conductivities of poly(methoxy polyethylene glycol monomethacrylate) complexes with LiSO3CH3, Polymer, 25 (1984) 1600-1602.
  12. A. Vallée, S. Besner, J. Prud'Homme, Comparative study of poly(ethylene oxide) electrolytes made with LiN(CF3SO2)2, LiCF3SO3 and LiClO4: Thermal properties and conductivity behaviour, Electrochim. Acta, 37 (1992) 1579-1583.
  13. Q. Ali, W. Taweepreda, K. Techato, Preparation and characterization of polymer electrolyte membrane from chloroacetate chitosan/chitosan blended with epoxidized natural rubber, Polym. Test., 82 (2020).
  14. H. Ismail, S.M. Shaari, N. Othman, The effect of chitosan loading on the curing characteristics, mechanical and morphological properties of chitosan-filled natural rubber (NR), epoxidised natural rubber (ENR) and styrene-butadiene rubber (SBR) compounds, Polym. Test., 30 (2011) 784-790.
  15. P.T. Nghia, N. Siripitakchai, W. Klinklai, T. Saito, Y. Yamamoto, S. Kawahara, Compatibility of liquid deproteinized natural rubber having epoxy group (LEDPNR)/poly (L-lactide) blend, J. Appl. Polym. Sci., 108 (2008) 393-399.
  16. J. Garbarczyk, W. Jakubowski, M. Wasiucionek, Effect of selected mobile ions on moisture uptake by beta″ alumina, Solid State Ion., 9-10 (1983) 249-253.
  17. A. Lauenstein, A. Johansson, J. Tegenfeldt, Water Absorption of the Polymer Electrolyte Systems Pb(CF3SO3)2PEOn and Zn(CF3SO3)2PEOn, J. Electrochem. Soc., 141 (1994).
  18. W. Klinklai, T. Saito, S. Kawahara, K. Tashiro, Y. Suzuki, J.T. Sakdapipanich, Y. Isono, Hyperdeproteinized natural rubber prepared with urea, J. Appl. Polym. Sci., 93 (2004) 555-559.
  19. W.D.N. Ayutthaya, S. Poompradub, Thermal and mechanical properties of poly(lactic acid)/natural rubber blend using epoxidized natural rubber and poly(methyl methacrylate) as co-compatibilizers, Macromol. Res., 22 (2014) 686-692.
  20. J. James, G.V. Thomas, K.P. Pramoda, S. Thomas, Transport behaviour of aromatic solvents through styrene butadiene rubber/poly [methyl methacrylate] (SBR/PMMMA) interpenetrating polymer network (IPN) membranes, Polymer, 116 (2017) 76-88.
  21. R. Jaratrotkamjorn, C. Khaokong, V. Tanrattanakul, Toughness enhancement of poly(lactic acid) by melt blending with natural rubber, J. Appl. Polym. Sci., 124 (2012) 5027-5036.
  22. C. Nakason, W. Pechurai, K. Sahakaro, A. Kaesaman, Rheological, mechanical and morphological properties of thermoplastic vulcanizates based on NR-g-PMMA/PMMA blends, Polym. Adv. Technol., 16 (2005) 592-592.
  23. M.Z. Sharil Fadli, A.L. Famiza, SiO2 Filler as Interface Modifier in PMMA/ENR 50 Electrolytes, Adv. Mat. Res,, 812 (2013) 120-124.
  24. F. Latif, M. Aziz, N. Katun, A.M.M. Ali, M.Z. Yahya, The role and impact of rubber in poly(methyl methacrylate)/lithium triflate electrolyte, J. Power Sources, 159 (2006) 1401-1404.
  25. O.S. Dahham, N.N. Zulkepli, Robust interface on ENR-50/TiO2 nanohybrid material based sol-gel technique: Insights into synthesis, characterization and applications in optical, Arab. J. Chem., 13 (2020) 6568-6579.
  26. S. Kawahara, W. Klinklai, H. Kuroda, Y. Isono, Removal of proteins from natural rubber with urea, Polym. Adv. Technol., 15 (2004) 181-184.
  27. J.E. Davey, M.J.R. Loadman, A Chemical Demonstration of the Randomness of Epoxidation of Natural Rubber, Br. Polym. J., (1984) 134-138.
  28. M. Yoshizawa, E. Marwanta, H. Ohno, Preparation and characteristics of natural rubber/poly(ethylene oxide) salt hybrid mixtures as novel polymer electrolytes, Polymer, 41 (2000) 9049-9053.
  29. J.-F.L. Nest, A. Gandini, H. Cheradame, Crosslinked Polyethers as Media for Ionic Conduction, Br. Polym. J., (1998) 253-268.
  30. Y. Tominaga, N. Takizawa, H. Ohno, Effect of added salt species on the ionic conductivity of PEO/sulfonamide salt hybrids, Electrochim. Acta, 45 (2000) 1285-1289.
  31. A.M. El-Hadi, The effect of additives interaction on the miscibility and crystal structure of two immiscible biodegradable polymers, Polímeros, 24 (2014).
  32. J. Zhao, M.D. Ediger, Y. Sun, L. Yu, Two DSC Glass Transitions in Miscible Blends of Polyisoprene/Poly(4-tert-butylstyrene), Macromolecules, 42 (2009) 6777-6783.
  33. S.A.M.N. M. S. Su’ait, A. Ahmad, H. Hamzah, M. Y. A. Rahman, Preparation and characterization of blended solid polymer electrolyte 49% poly(methyl methacrylate)-grafted natural rubber:poly(methyl methacrylate)–lithium tetrafluoroborate, J. Solid State Electrochem., (2012) 2275–2282.
  34. M.D. Glasse, R. Idris, R.J. Latham, R.G. Linford, W.S. Schlindwein, Polymer electrolytes based on modified natural rubber, Solid State Ion., 147 (2002) 289-294.
  35. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds Part A: Theory and Applications in Inorganic Chemistry, John Wiley & Sons, Inc., Hoboken, New Jersey, Canada.