##common.pageHeaderLogo.altText##
JOURNAL OF MATERIALS & CONSTRUCTION

ISSN: 2734-9438

Website: www.jomc.vn

Modeling principal plate tectonic processes by sandbox experiments: tools for teaching at universities

Huyen Tran Thi Phuong

Abstract

Analogue sand models have been used to reproduce the principle plate tectonic processes, providing the insight of plate tectonics in nature. A simple and versatile sandbox was built and used for the extension and compression experiments modelling principle plate tectonic such as plate divergence or convergence by stretching or compressing sand in a sandbox model. The glass sidewalls allow observing and analyzing the sequential development of faults and structures like normal fault, thrust fault, graben structure, fold and thrust belts, so on. The results can be correlated with geological structures in nature. In an educational context, students can perform the experiments and also vary experimental parameters such as sand layer thickness, geometry of the sandbody or use of different experimental materials. The obtained results are then compared with natural geological examples to improve the students’ receptivity. This indicates that sandbox experiments provide an effective means for teaching geology courses and also soil mechanics courses at universities.

References

  1. . Nguyen, V.V. (2017). Kiến tạo mảng. Thư viện số tài liệu nội sinh, Vietnam National University, Hanoi. http://repository.vnu.edu.vn/handle/VNU_123/18673 (accessed 29 May 2021)
  2. . https://www.nationalgeographic.org/encyclopedia/plate-tectonics/ (accessed 29 May 2021)
  3. . Hubbert, M.K. (1937). Theory of scale models as applied to the study of geologic structures. Geological Society of America Bulletin, 48: 1459-1520.
  4. . Steyrer, H.P. (2009). Teaching principal plate tectonic processes by means of analogue modeling. Studia UBB Geologia 54.1 : 13-16.
  5. . Horsfield, W.T. (1977). An experimental approach to basement-controlled faulting. Geologie en Mijnbouw, 56 (4): 363-370.
  6. . Huiqi, L., McClay, K. R., & Powell, D. (1992). Physical models of thrust wedges. In Thrust tectonics (pp. 71-81). Springer, Dordrecht.
  7. . Storti, F., & McClay, K. (1995). Influence of syntectonic sedimentation on thrust wedges in analogue models. Geology, 23(11), 999-1002.
  8. . Horner, J. T., & Steyrer, H. P. (2005). An analogue model of a crustal-scale fracture zone in West-Central Mexico: evidence for a possible control of ore-forming processes. Neues Jahrbuch für Geologie und Palaeontologie-Abhandlungen, 185-206.
  9. . Liu, S., Yeh, T. C. J., & Gardiner, R. (2002). Effectiveness of hydraulic tomography: Sandbox experiments. Water Resources Research, 38(4), 5-1.
  10. . Lu, C. Y., & Malavieille, J. (1994). Oblique convergence, indentation and rotation tectonics in the Taiwan Mountain Belt: Insights from experimental modelling. Earth and Planetary Science Letters, 121(3-4), 477-494.
  11. . Crook, A. J. L., Willson, S. M., Yu, J. G., & Owen, D. R. J. (2006). Predictive modelling of structure evolution in sandbox experiments. Journal of Structural Geology, 28(5), 729-744.
  12. . https://www.otago.ac.nz/geology/news/otago121004.html (accessed 29 May 2021)
  13. . Coney, P. J., Muñoz, J. A., McClay, K. R., & Evenchick, C. A. (1996). Syntectonic burial and post-tectonic exhumation of the southern Pyrenees foreland fold–thrust belt. Journal of the Geological Society, 153(1), 9-16.
  14. . Stockli, D. F., Dumitru, T. A., McWilliams, M. O., & Farley, K. A. (2003). Cenozoic tectonic evolution of the White Mountains, California and Nevada. Geological Society of America Bulletin, 115(7), 788-816.
  15. . Becker, A. (2000). The Jura Mountains—an active foreland fold-and-thrust belt?. Tectonophysics, 321(4), 381-406.
  16. . Nemcok, M., Schamel, S., & Gayer, R. (2009). Thrustbelts: Structural architecture, thermal regimes and petroleum systems. Cambridge University Press.
  17. . McClay, K. R. (1992). Glossary of thrust tectonics terms. Thrust tectonics, 419-433.
  18. . Chu, V. N. (2017). Đứt gãy địa chất. Thư viện số tài liệu nội sinh, Vietnam National University, Hanoi. http://repository.vnu.edu.vn/handle/VNU_123/17997 (accessed 29 May 2021)
  19. . Wood, J., & Guth, A. (2013). East Africa's Great Rift Valley: a complex rift system. Geology. com. https://geology.com/articles/east-africa-rift.shtml (accessed 05 June 2021)
  20. . Keller, G. R., & Baldridge, W. S. (1999). The Rio Grande rift: A geological and geophysical overview. Rocky Mountain Geology, 34(1), 121-130.
  21. . Olaussen, S., Larsen, B. T., & Steel, R. (1994). The Upper Carboniferous-Permian Oslo Rift; basin fill in relation to tectonic development.
  22. . Rotstein, Y., Edel, J. B., Gabriel, G., Boulanger, D., Schaming, M., & Munschy, M. (2006). Insight into the structure of the Upper Rhine Graben and its basement from a new compilation of Bouguer Gravity. Tectonophysics, 425(1-4), 55-70.
  23. . Wilson, J. T. (1968). Static or mobile earth: the current scientific revolution. Proceedings of the American Philosophical Society, 112(5), 309-320.
  24. . Dietz, R. S. (1972). Geosynclines, mountains and continent-building. Scientific American, 226(3), 30-39.
  25. . Burke, K., & Dewey, J. F. (1975). The Wilson Cycle. In Geological Society of America, North-eastern Section, 10th Annual Meeting.
  26. . Audet, P., & Bürgmann, R. (2011). Dominant role of tectonic inheritance in supercontinent cycles. Nature Geoscience, 4(3), 184-187.
  27. . Wilson, R. W., Houseman, G. A., Buiter, S. J. H., McCaffrey, K. J., & Doré, A. G. (2019). Fifty years of the Wilson Cycle concept in plate tectonics: an overview.