##common.pageHeaderLogo.altText##
JOURNAL OF MATERIALS & CONSTRUCTION

ISSN: 2734-9438

Website: www.jomc.vn

Use of finely ground fly ash as mineral admixture in blended Portland cement production

Nguyen Duong Dinh , Nguyen Ngoc Doanh

Abstract

Fly ash is an active mineral admixture used commonly in the production of blended Portland cement. Fly ash improves many important properties of cement and cement concrete: increasing late compressive strength, increasing sulfate resistance, reducing heat of hydration, reducing alkali-silica reaction and reducing water permeability. However, the current use of original fly ash has a disadvantage that it reduces the early compressive strength of cement, which limits the amount of fly ash blended into the cement. Theoretically, increasing fly ash fineness would increase the reactivity of fly ash. Therefore, the objective of this study was to evaluate the possibility of using finely ground fly ash as a mineral admixture in the production of blended Portland cement through determining the effect of original fly ash (Blaine fineness of 2600 cm2/g) and finely ground fly ash (Blaine fineness of 5000 cm2/g and 6500 cm2/g) on some properties of Portland cement. The investigated cement properties include water of consistency, setting time, and compressive strength at ages of 1, 3, 7, 28 days. The results show that, increasing the fineness of fly ash increased the water of consistency and setting time of the cement, but the increases were small. Increasing the fineness of fly ash significantly increased both early and late compressive strength of the cement. Therefore, finely ground fly ash can be used to minimize the disadvantage of fly ash, thereby allowing the use of higher fly ash content in production blended Portland cement.

References

  1. . TCVN 10302:2014. Phụ gia hoạt tính tro bay dùng cho bê tông, vữa xây và xi măng. Bộ Khoa học và Công nghệ, Việt Nam.
  2. . Papadakis V.G. (1999). Effect of fly ash on Portland cement systems Part I. Low-calcium fly ash, Cement and Concrete Research, Elsevier, 29:1727–1736.
  3. . Lê Văn Tuấn, Nguyễn Quốc Toản (2021). Giải pháp thúc đẩy sử dụng tro, xỉ nhà máy nhiệt điện than làm vật liệu xây dựng trong xu thế nền kinh tế tuần hoàn tại Việt Nam, Tạp chí xây dựng, Bộ xây dựng, 10: 176-182.
  4. . Cho Y. K., Jung S. H., Choi Y.C. (2019). Effects of chemical composition of fly ash on compressive strength of fly ash cement mortar, Construction and Building Materials, Elsevier, 204:255–264.
  5. . Metha P.K., Monteiro P.J.M. (2006). Concrete, microstructure, properties and materials. McGraw-Hill, New York.
  6. . Liu K., Deng M., Mo L. (2013). Effect of fly ash on resistance to sulfate attack of cement-based materials. Key Engineering Materials, Trans Tech Publications, 539:124-129.
  7. . Thomas M. (2009), Optimizing the use of fly ash in concrete, Portland cement Association.
  8. . Wang X.Y. (2014). Effect of fly ash on properties evolution of cement based materials. Construction and Building Materials, Elsevier, 69:32–40.
  9. . TCVN 4030 : 2003. Xi măng – Phương pháp xác định độ mịn. Bộ Khoa học và Công nghệ, Việt Nam.
  10. . TCVN 6017:2011. Xi măng – Phương pháp xác định thời gian đông kết và độ ổn định thể tích. Bộ Khoa học và Công nghệ, Việt Nam.
  11. . TCVN 6016:2011. Xi măng – Phương pháp thử - Xác định cường độ. Bộ Khoa học và Công nghệ, Việt Nam.
  12. . Schiller, B., Ellerbrock, H.G. (1992) The grinding and properties of cement with several main constituents, Zement-Kalk-Gips, 45(7): 325–334.
  13. . Taylor, H.F.W. (1997). Cement Chemistry. Second Edition. Thomas Telford Publishing, London.
  14. . TCVN 6260:2009, Xi măng Pooc lăng hỗn hợp - Yêu cầu kỹ thuật. Bộ Khoa học và Công nghệ, Việt Nam.