ISSN: 2734-9438
Website: www.jomc.vn
Effect of gypsum content on some properties of blast furnace slag cement
Abstract
The objective of the study is to evaluate the influence of gypsum content on certain properties of blast furnace slag cement (with 40% blast furnace slag) at gypsum levels ranging from 2% to 5%. The properties of the cement investigated include water of consistency, initial and final setting times, compressive strength at ages of 1, 3, 7, and 28 days, and heat of hydration of the cement paste within the first 24 hours. Experimental results indicate that increasing the gypsum content has minimal impact on the water of consistency but prolongs the setting time, while still meeting the technical requirements according to TCVN 6260:2020. The optimal gypsum content, in terms of strength, for blast furnace slag cement is 4%, providing compressive strength comparable to the control sample of ordinary Portland cement at 3 and 28 days of age.
References
- Chen W. (2007). Hydration of slag cement: theory, modeling and application. University of Twente, The Netherlands.
- Escalantea J. I., Gomez L. Y., Johal K. K., Mendoza G., Mancha H., Mendez J. (2001). Reactivity of blast-furnace slag in Portland cement blends hydrated under different conditions. Cement and Concrete Research, Elsevier, 31:1403–1409.
- Darquennes A., Espion B., Staquet S. (2013). How to assess the hydration of slag cement concretes. Construction and Building Materials, Elsevier, 40:1012–1020.
- Tao J., Wei X. (2019). Effect of ground granulated blast-furnace slag on the hydration and properties of cement paste. Advances in Cement Research, ICE publishing, 31(6):251-260.
- Siddique R., Khan M. I. (2011). Supplementary Cementing Materials. Springer.
- Douglas E., Elola A., Malhotra V. M. (1990). Characterisation of ground granulated blast furnace slag and fly ashes and their hydration in Portland cement blends. Cement Concrete and Aggregates, CCAGDP, 12(2):38–46.
- Pal S.C., Mukherjee A., Pathak S. R. (2003). Investigation of hydraulic activity of ground granulated blast furnace slag in concrete. Cement and Concrete Research, Elsevier, 33:1481–1486.
- Wang P. Z., Trettin R., Rudert V. (2005) Effect of fineness and particle size distribution of granulated blast-furnace slag on the hydraulic reactivity in cement systems. Advances in Cement Research, ICE publishing, 17(4):161–166.
- Taylor, H.F.W. (1997). Cement Chemistry. Second Edition. Thomas Telford Publishing, London.
- Nguyen D. D., Nguyen H. N. (2021). Nghiên cứu sử dụng thạch cao phế thải công nghiệp gốm sứ làm phụ gia sản xuất xi măng Pooc lăng. Tạp chí Vật liệu và xây dựng, Viện vật liệu xây dựng, 3:9-13.
- Mohammed, S., Safiullah, O. (2018). Optimization of the 〖SO〗_3 content of an Algerian Porland cement, Construction and Building Materials, Elsevier, 164: 362-370.
- Odler I. (2000). Special Inorganic Cements. E & FN Spon, New York, USA.
- TCVN 4030:2003. Xi măng – Phương pháp xác định độ mịn. Bộ Khoa học và Công nghệ, Việt Nam.
- TCVN 6017:2011. Xi măng – Phương pháp xác định thời gian đông kết và độ ổn định thể tích. Bộ Khoa học và Công nghệ, Việt Nam.
- TCVN 6016:2011. Xi măng – Phương pháp thử - Xác định cường độ. Bộ Khoa học và Công nghệ, Việt Nam.
- Schiller, B., Ellerbrock, H.G. (1992). The grinding and properties of cement with several main constituents, Zement-Kalk-Gips, 45(7):325-334.
- TCVN 6260:2020. Xi măng Poóc lăng hỗn hợp. Bộ Khoa học và Công nghệ, Việt Nam.
- Leklou, N., Nguyen, V. H., Mounanga, P. (2017). The effect of the partial cement substitution with fly ash on delayed ettringite formation in heat-cured mortars. KSCE Journal of Civil and Engineering, Springer, 21:1359–1366.

