
ISSN: 2734-9438
Website: www.jomc.vn
The effects of fine aggregates on the workability and compressive strength of high-strength fine-grained concrete
Abstract
Concrete is the most commonly used construction material in Vietnam and worldwide for building projects. With the development of the socio-economic sector, infrastructure projects and high-rise buildings are being constructed on an increasingly larger scale, making the demand for manufacturing and utilizing concrete materials with high compressive strength more urgent. This study aims to investigate the feasibility of producing high-strength fine-grained concrete (HSFGC) with a compressive strength of over 100 MPa using locally available materials in Vietnam. The mixtures were designated based on the composition of ultra-high performance concretes (UHPCs), which contain no coarse aggregates. River sand, silica sands, crushed quartz sand, and ceramic powder were used as fine aggregates, while PCB 40 But Son and silica fume SF90 were used as binders in the matrix compositions. The water-to-cement (W/C) ratios used varied from 0.2 to 0.26, combined with a superplasticizer-based polycarboxylate to ensure the flowability of the HSCs. The test results indicated that silica sand produced the highest compressive strength of HSFGCs in comparison with river sand and crushed quartz sand. As the W/C decreased from 0.26 to 0.2, the workability of HSFGCs (flow value) decreased from 26 to 23 cm, but the compressive strength of HSFGC with silica sand increased from 70.4 to 101.9 MPa. HSFGCs with silica sand produced a compressive strength of 101 MPa, while HSFGCs with a combination of silica sand and 10% ceramic powder can reach a compressive strength of up to 108.1 MPa, making it a promising mix for developing UHPC with economic advantages.
References
- TCVN 10306:2014, “High Strength Concrete - Cylindrical Pattern Component Design” 2014. (Bê tông cường độ cao - Thiết kế thành phần mẫu hình trụ).
- N. V. Tuấn, N. C. Thắng, and P. H. Hanh, “Study on the development of ultra-high-strength concrete using mineral admixtures to partially replace cement in Vietnam towards sustainable development”, Journal of Science and Technology in Civil Engineering, 2015. (Nghiên cứu chế tạo bê tông cường độ siêu cao sử dụng phụ gia khoáng thay thế một phần xi măng ở Việt Nam hướng tới phát triển bền vững).
- N. C. Thắng, N. T. Thắng, P. H. Hanh, N. V. Tuấn, L. T. Thành, and N. T. Lâm, “Research and manufacture of ultra-high-quality concrete using silica fume and ground granulated blast furnace slag in Vietnam”, Journal of Science and Technology in Civil Engineering, 2013 (Nghiên cứu chế tạo bê tông chất lượng siêu cao sử dụng silica fume và xỉ lò cao hạt hóa nghiền mịn ở Việt Nam).
- N. C. Thắng, N. T. Thắng, P. H. Hanh, N. V. Tuấn, L. T. Thành, and N. T. Lâm, “Study on the production of ultra-high-performance concrete using silica fume and ground granulated blast furnace slag in Vietnam”, Journal of Science and Technology in Civil Engineering, 2013 (Nghiên cứu chế tạo bê tông chất lượng siêu cao sử dụng silica fume và xỉ lò cao hạt hóa nghiền mịn ở việt nam).
- T. N. Công, N. V. Tuấn, and P. H. Hanh, “Effect of Mineral Admixtures on the Corrosion Resistance of Reinforcement in Ultra-High Performance Concrete”, Journal of Science and Technology in Civil Engineering, 2015. (Ảnh hưởng của phụ gia khoáng đến khả năng ăn mòn cốt thép trong bê tông chất lượng siêu cao).
- P. D. Hòa, K. Đ. Tùng, N. T. Phát, N. M. Hùng, L. B. Danh, and N. C. Thắng, “Proposal of several standardized I-shaped cross-sections for pre-tensioned prestressed bridge girders using UHPC materials manufactured in Vietnam”, Journal of Science and Technology in Civil Engineering, vol. 14, pp. 1–13, 2020, (Đề xuất một số tiết diện chữ I định hình cho dầm cầu dự ứng lực căng trước sử dụng vật liệu UHPC sản xuất tại Việt Nam).
- L. H. Viet, D.P. Lam, N. S. Duc, N. T. Thuong, T. N. Thanh, N. D. Liem, K. D. Joo, “Damage sensing characteristics of smart ultra-high-performance concrete containing electrically conductive fiber and particle fillers under high compressive stress”, Sensors Actuators A Phys., vol. 383, Mar. 2025, doi: 10.1016/j.sna.2025.116242.
- L. H. Viet, N. V. Manh, P. T. Nhan, T. V. Lam, P. X. Nui, N. D. Liem, K. D. Joo, “Self-sensing characteristics of smart high-performance cementitious composites containing multiwall carbon nanotubes, steel fibers, and steel slag aggregates under compression,” Sensors Actuators A Phys., vol. 365, Jan. 2024, doi: 10.1016/j.sna.2023.114920.
- L. H. Viet; N. V. Khuay; L. N. Nam; P. V. Khai; T. D. Tu; T. V. Lam; P. X. Thuy, “Study on the fine-grained concrete with compressive strength over 100 MPa using steel slag particles as a replacement for sand”, Journal of Materials and Construction, vol. 13, no. 6, pp. 5–12, 2023. (Nghiên cứu chế tạo bê tông hạt mịn cường độ chịu nén trên 100 MPa sử dụng hạt xỉ thép thay thế cát).
- L. H. Viet; Đ. A. Duc, N. V. Manh; N. T. Khanh; N. D. Liem, “Compressive and electrical resistivity properties of UHPC containing different steel fibers” Xây dựng, pp. 110–114, 2023. (Đặc trưng nén và điện trở suất của bê tông cường độ siêu cao sử dụng các loại sợi thép khác nhau).
- M. Zhao, X. Zhang, and Y. Zhang, “Effect of free water on the flowability of cement paste with chemical or mineral admixtures,” Constr. Build. Mater., vol. 111, pp. 571–579, 2016, doi: 10.1016/j.conbuildmat.2016.02.057.
- K. C. Hover, “The influence of water on the performance of concrete,” Constr. Build. Mater., vol. 25, no. 7, pp. 3003–3013, 2011, doi: 10.1016/j.conbuildmat.2011.01.010.
- C. Hu, “Microstructure and mechanical properties of fly ash blended cement pastes,” Constr. Build. Mater., vol. 73, pp. 618–625, 2014, doi: 10.1016/j.conbuildmat.2014.10.009.
- T. Akçaoǧlu, M. Tokyay, and T. Çelik, “Assessing the ITZ microcracking via scanning electron microscope and its effect on the failure behavior of concrete,” Cem. Concr. Res., vol. 35, no. 2, pp. 358–363, 2005, doi: 10.1016/j.cemconres.2004.05.042.
- R. Hela, L. Bodnarova, and L. Rundt, “Development of Ultra High Performance Concrete and Reactive Powder Concrete with Nanosilica,” IOP Conf. Ser. Mater. Sci. Eng., vol. 371, no. 1, 2018, doi: 10.1088/1757-899X/371/1/012017.
- M. K. Maroliya, “Micro Structure Analysis of Reactive Powder Concrete,” Int. J. Eng. Res. Dev., vol. 4, no. 2, pp. 68–77, 2012.
- B. A. Graybeal and H. G. Russel, “Ultra-High Performance Concrete: A State-of-the-Art Report for the Bridge Community. The Federal Highway Administration, p. 176, 2013.
- L. T. Thành, “Effect of curing regimes on the compressive strength of Ultra-High-Performance Concrete”, Journal of Construction Science and Technology, pp. 23–29, 2017. (Ảnh hưởng của chế độ dưỡng hộ đến cường độ chịu nén của bê tông chất lượng siêu cao).
- H.V. Le, M.K. Kim, D.J. Kim, J. Park, “Electrical properties of smart ultra-high performance concrete under various temperatures, humidities, and age of concrete”, Cem Concr Compos, vol. 118, 2021.