ISSN:
Website: www.jomc.vn
Development of an eco-friendly binder using raw material of industrial by-product
Abstract
The present study aims to evaluate the potential use of ground granulated blast-furnace slag in thedevelopment of an innovative sulfate-activated binder, which has similar properties toplain Portlandcement paste and can be used to replace cement in construction activities. The effects of Na2SO4 contents(1.5%, 3%, 4.5%, 6%, and 7.5% by mass of slag) as an activator on engineering properties of the sulfate-activated binder were investigated through the tests of flowability, setting time, compressive and flexural strengths, water absorption, and drying shrinkage. The experimental results show that the Na2SO4 contenthad significant influences on all of the engineering properties of the binders. Increasing the Na2SO4 contentresulted in reducing flowability, setting time, and water absorption, while increasing the strength anddrying shrinkage of the sulfate-activated samples. The test results further indicate that using 7.5% Na2SO4 provided a significant improvement in the engineering properties of the newly developed binders.
References
- . Barcelo L., Kline J., Walenta G., Gartner E. (2013), Cement and carbon emissions, Materials and Structures 47, pp. 1055–1065.
- . Andrew R. M. (2018), Global CO2 emissions from cement production, Earth System Science Data 10, pp. 195–217.
- . EI-Chabib H. (2020), Properties of SCC with supplementary cementing materials, in: Self-Compacting Concrete: Materials, Properties and Applications (eds.), Woodhead Publishing Series in Civil and Structural Engineering, pp. 283–308.
- . Cổng thông tin điện tử Bộ Xây dựng, Ứng dụng xỉ lò cao vào sản xuất xi măng, https://moc.gov.vn/tl/tin-tuc/49097/ung-dung-xi-lo-cao-vao-san-xuat-xi-mang.aspx (Truy cập ngày 2/8/2021).
- . Thời báo Tài chính, Tái chế xỉ gang thép: Vừa mang lại lợi ích kinh tế, vừa bảo vệ môi trường, http://thoibaotaichinhvietnam.vn/pages/kinh-doanh/2018-10-05/tai-che-xi-gang-thep-vua-mang-lai-loi-ich-kinh-te-vua-bao-ve-moi-truong-62796.aspx (Truy cập ngày 2/8/2021).
- . Nguyen H. A., Chang T. P., Thymotie A. (2020), Enhancement of early engineering characteristics of modified slag cement paste with alkali silicate and sulfate, Construction and Building Materials 230, pp. 117013.
- . Amer I., Kohail M., EI-Feky M. S., Rashad A., Khalaf M. A. (2021), A review on alkali-activated slag concrete, Ain Shams Engineering Journal 12(2), pp. 1475–1499.
- . Nguyễn Công Thắng, Nguyễn Thị Thắng, Phạm Hữu Hanh, Nguyễn Văn Tuấn, Lê Trung Thành, Nguyễn Trọng Lâm (2013), Nghiên cứu chế tạo bê tông chất lượng siêu cao sử dụng silica fume và xỉ lò cao hoạt hóa nghiền mịn ở Việt Nam, Tạp chí Khoa học Công nghệ Xây dựng, số 15/3, tr. 83–92.
- . Nguyễn Văn Chính, Phạm Công Tuấn Trung (2021), Nghiên cứu thực nghiệm khả năng chống xâm thực axit của bê tông sử dụng xỉ lò cao và tro bay, Tạp chí Khoa học Công nghệ Xây dựng, số 15/3, tr. 79–92.
- . Nguyễn Thanh Bằng, Nguyễn Tiến Trung, Đinh Hoàng Quân (2020), Ảnh hưởng của độ mịn xỉ lò cao đến cường độ của bê tông chất kết dính kiềm hoạt hóa, Tạp chí Khoa học và Công nghệ Thủy lợi, số 61, tr. 16–24.
- . Yuan B., Yu Q. L., Brouwers H. J. H. (2017), Evaluation of slag characteristics on the reaction kinetics and mechanical properties of Na2CO3 activated slag, Construction and Building Materials 131, pp. 334–346.
- . Zhao Y., Qiu J., Zhang S., Guo Z., Ma Z., Sun X., Xing J. (2020), Effect of sodium sulfate on the hydration and mechanical properties of lime-slag based eco-friendly binders, Construction and Building Materials 250, pp. 118603.
- . Mobasher N., Bernal S. A., Provis J. L. (2016), Structural evolution of an alkali sulfate activated slag cement, Journal of Nuclear Materials 468, pp. 97–104.
- . Norrarat P., Tangchirapat W., Songpiriyakij S., Jaturapitakkul C. (2019), Evaluation on strengths from cement hydration and slag reaction of mortars containing high volume of ground river sand and GGBF slag, Advances in Civil Engineering 2019, pp. 4892015.
- . Hambach M., Rutzen M., Volkmer D. (2019), Properties of 3D-printed fiber-reinforced Portland cement paste, 3D Concrete Printing Technology, pp. 73–113.
- . Rashad A. M., Bai Y., Basheer P. A. M., Collier N. C., Milestone N. B. (2012), Chemical and mechanical stability of sodium sulfate activated slag after exposure to elevated temperature, Cement and Concrete Research 42, pp. 333–343.
- . Zhang J., Tan H., Bao M., Liu X., Luo Z., Wang P. (2021), Low carbon cementitious materials: Sodium sulfate activated ultrafine slag/fly ash blends at ambient temperature, Journal of Cleaner Production 280, pp. 124363.
- . Tan H., Deng X., He X., Zhang J., Zhang X., Su Y., Yang J. (2019), Compressive strength and hydration process of wet-grinded granulated
- blast-furnace slag activated by sodium sulfate and sodium carbonate, Cement and Concrete Composites 97, pp. 387–398.
- . Zhang L., Chen B. (2017), Hydration and properties of slag cement activated by alkali and sulfate, Journal of Materials in Civil Engineering 29, pp. 04017091.
- . Lim S. N., Wee T. H. (2000), Autogenous shrinkage of ground-granulated blast furnace slag concrete, ACI Material Journal 5, pp. 587–593.
- . Rashad A. M. (2015), Influence of different additives on the properties of sodium sulfate activated slag, Construction and Building Materials 79, pp. 379–389.

