ISSN:
Website: www.jomc.vn
Simulation on flexural behavior of reinforced concrete slab using coupled damage-plasticity microplane (CDPM) material model
Abstract
The article focuses on the application of the Coupled Damage-Plasticity Microplane (CDPM) material model equipped with ANSYS software in simulating the nonlinear behavior of concrete materials. The nonlinear behavior of the reinforced concrete (RC) slab which was designed according to ACI 318-08 standard under monotonically increasing load is analyzed based on The Finite Element Method. The three-dimensional finite element model of the three-point bending test of the RC slab was built in ANSYS/Workbench software (ANSYS Student 2020). The solid eighth-node CPT215 elements are employed in the simulation for concrete material whereas the embedded REINF264 elements are used to simulate the rebars. A crucial part of this paper is a determination of the suitable input parameters of the CDPM material model (15 parameters) for the considered flexural RC slab. The numerical results of the relationship between the applied load and the displacement at the mid-span of the RC slab are presented and compared with the experimental results of the previous study.
References
- Grassl, P., Xenos, D., Nyström, U., Rempling, R., Gylltoft, K. (2013). CDPM2: A damage-plasticity approach to modelling the failure of concrete. International Journal of Solids and Structures, 50(24):3805-3816.
- Wang, T., Hsu, T. (2001). Nonlinear finite element analysis of concrete structures using new constitutive models. Computers & structures, 79:2781-2791.
- William, K.J., Warnke, E.P. (1975). Constitutive model for the triaxial behavior of concrete. In: Proceedings of the International Assoc. for Bridge and Structural Engineering, 19:1-30.
- Trần Thế Truyền, Nguyễn Viết Trung (2011). Các mô hình ứng xử của bê tông, đánh giá mô hình tối ưu dùng trong mô phỏng số các kết cấu bê tông. Technical report, Trường Đại học Giao Thông Vận Tải.
- Lê Nhựt Trường (2013). Triển khai mô hình vật liệu microplane M4L cho phân tích phi tuyến kết cấu bê tông trong phần mềm ANSYS. Luận văn thạc sĩ, Trường Đại học Bách Khoa thành phố Hồ Chí Minh.
- Zdenek, P. B. and Pere, C. P. (1988). Microplane Model for Brittle-Plastic Material. I: Theory. Journal of Engineering Mechanics, 114(10):1672-1688.
- Bažant, Z. P., Caner, F. C., Carol, I., Adley, M. D., Akers, S. A. (2000). Microplane Model M4 for Concrete. I: Formulation with Work-Conjugate Deviatoric Stress. Journal of Engineering Mechanics, 126(9):944–953.
- Caner, F. C., Bažant, Z. P. (2012). Microplane Model M7 for Plain Concrete. I: formulation. Journal of Engineering Mechanics, 139(12):1714–1723.
- Pirker, M. (2020). Non-Linear Seismic Analysis of a Concrete Gravity Dam Using a Microplane Material Model. Final project for Master's degree, Graz University of Technology.
- Zreid, I., Kaliske, M. (2014). Regularization of Microplane Damage Models Using an Implicit Gradient Enhancement. International Journal of Solids and Structures, 51(19-20):3480-3489.
- Zreid, I., Kaliske, M. (2016). Implicit Gradient Formulation for Microplane Drucker-Prager Plasticity. International Journal of Plasticity, 83:252-272.
- Zreid, I., Kaliske, M. (2018). Gradient Enhanced Plasticity-Damage Microplane Model for Concrete. Computational Mechanics, 62:1239-1257.
- Nguyen, V. T., Li, J., Caner, F. C., (2013). Microplane Constitutive Model M4L for Concrete. I: Theory. Computers & Structures, 128: 219-229.
- Cao, N. T., Pansuk, W., Torres, L. (2015). Flexural behavior of fire-Damaged RC slabs repaired with near-Surface mounted (NSM) carbon fiber reinforced polymer (CFRP) rods. Journal of Advanced Concrete Technology, 13(1):15-29.
- ACI 318-08 (2008). Building Code Requirements for Structural Concrete and Commentary. American Concrete Institute, p.345.
- Release 2020 R1 (2020) Material Reference. ANSYS Inc, pp.116-125.
- Feenstra, P. H., Borst, R. D. (1996). A Composite Plasticity Model for Concrete. International Journal of Solids and Structures, 33(5):707-730.
- Jiang, H., Zhao, J. (2015). Calibration of the Continuous Surface Cap Model for Concrete. Finite Elements in Analysis and Design, 97:1-19.
- Nguyen, D. G., Houlsby, G. T. (2008). A Coupled Damage–Plasticity Model for Concrete Based on Thermodynamic Principles: Part I: Model Formulation and Parameter Identification. International Journal for Numerical and Analytical Methods in Geomechanics, 32(4):353-389.
- Pham, D. D., Nguyen, P. C., Nguyen, D. L., Le, H. A. (2020). Simulation of Concrete-filled Steel Box Column. In: Reddy J., Wang C., Luong V., Le A. (eds) ICSCEA 2019. Lecture Notes in Civil Engineering, Vol 80. ICSCEA 2019. Springer, Singapore.
- Release 2020R1 (2020) ANSYS Mechanical APDL Theory Reference. ANSYS Inc.

