ISSN:
Website: www.jomc.vn
Tính chất cơ học và phản ứng với lửa của vật liệu composite trên cơ sở nhựa epoxy sinh học – diatomite
Tóm tắt
Bài báo trình bày kết quả phát triển vật liệu composite mới nguồn gốc tự nhiên trên cơ sở nhựa epoxy resorcinol sinh học – diatomite bằng quy trình xanh hai giai đoạn dựa trên đặc tính “sống” của sự trùng hợp cation. Bao gồm sự khởi đầu phản ứng bằng ánh sáng và sau đó là sự hóa rắn không cần ánh sáng dưới tác dụng nhiệt, quy trình này cho phép thu được các composite epoxy-diatomite dày và không trong suốt mà không cần dùng bất cứ dung môi hay chất hóa rắn gốc amine nguy hại nào. Các ảnh hưởng của hàm lượng diatomite đối với các tính chất cơ học và phản ứng với lửa của những composite này đã được khảo sát. Trên cơ sở đánh giá các tính chất này, composite thu được với diatomite chiếm 40% khối lượng được xem như composite tối ưu. Composite này có mô đun uốn là 3,6 MPa và ứng xử làm chậm cháy đáng chú ý với đỉnh tốc độ tỏa nhiệt (peak of Heat Release Rate - pHRR) 132 W/g và tổng lượng tỏa nhiệt 6 kJ/g ghi nhận được trong phân tích nhiệt lượng kế dòng đốt cháy nhiệt phân (Pyrolysis Combustion Flow Calorimetry - PCFC).
Tài liệu tham khảo
- . van Garderen N, Clemens FJ, Mezzomo M, et al (2011) Investigation of clay content and sintering temperature on attrition resistance of highly porous diatomite based material. Applied Clay Science 52:115–121.
- . Parkinson J, Gordon R (1999) Beyond micromachining: The potential of diatoms. Trends in Biotechnology 17:190–196.
- . Akin S, Schembre JM, Bhat SK, Kovscek AR (2000) Spontaneous imbibition characteristics of diatomite. Journal of Petroleum Science and Engineering 25:149–165.
- . Lee S, Ha J-H, Lee J, et al (2020) Preparation and characterization of a low-cost and natural material-based reticulated porous diatomite-kaolin composite. Applied Sciences 10:2125.
- . Mateo S, Cuevas M, La Rubia MD, Eliche-Quesada D (2017) Preliminary study of the use of spent diatomaceous earth from the brewing industry in clay matrix bricks. Advances in Applied Ceramics 116:77–84.
- . Pimraksa K, Chindaprasirt P (2009) Lightweight bricks made of diatomaceous earth, lime and gypsum. Ceramics International 35:471–478.
- . Escalera E, Garcia G, Terán R, et al (2015) The production of porous brick material from diatomaceous earth and Brazil nut shell ash. Construction and Building Materials 98:257–264.
- . Zheng S, Bai C, Gao R (2012) Preparation and photocatalytic property of TiO2 /diatomite-based porous ceramics composite materials. International Journal of Photoenergy 2012:1–4.
- . Zeren D, Güden M (2017) The increased compression strength of an epoxy resin with the addition of heat-treated natural nano-structured diatom frustules. Journal of Composite Materials 51:1681–1691.
- . Leskovac M, Kovačević V, Lučić S, et al (2002) Composites of Poly(Acrylate) Copolymer filled with diatomaceous earth: morphology and mechanical behaviour. Materials Research Innovations 6:206–213.
- . Cacciotti I, Rinaldi M, Fabbrizi J, Nanni F (2019) Innovative polyetherimide and diatomite based composites: influence of the diatomite kind and treatment. Journal of Materials Research and Technology 8:1737–1745.
- . Wang J, Zhao D, Liu Z, et al (2020) Effects of biomass diatom frustule on structure and properties of polyurethane elastomer. Journal of Applied Polymer Science 137:48452.
- . Dobrosielska M, Przekop R, Sztorch B, et al (2020) Biogenic composite filaments based on polylactide and diatomaceous earth for 3D printing. Materials 13:4632.
- . Fu Y, Xu X, Huang Y, et al (2017) Preparation of new diatomite-chitosan composite materials and their adsorption properties and mechanism of Hg(II). Royal Society Open Science 4:170829.
- . Wu W, Cong S (2020) Modified diatomite forms in the rubber nanocomposites. Journal of Thermoplastic Composite Materials 33:659–672.
- . Jin H-Y, Yang Y-Q, Xu L, Hou S-E (2011) Effects of spherical silica on the properties of an epoxy resin system. Journal of Applied Polymer Science 121:648–653.
- . Yang P, Ren M, Chen K, et al (2019) Synthesis of a novel silicon-containing epoxy resin and its effect on flame retardancy, thermal, and mechanical properties of thermosetting resins. Materials Today Communications 19:186–195.
- . Liu Y-L, Wu C-S, Chiu Y-S, Ho W-H (2003) Preparation, thermal properties, and flame retardance of epoxy-silica hybrid resins. Journal of Polymer Science Part A: Polymer Chemistry 41:2354–2367.
- . Gu H, Guo J, He Q, et al (2013) Flame-Retardant Epoxy Resin Nanocomposites Reinforced with Polyaniline-Stabilized Silica Nanoparticles. Industrial & Engineering Chemistry Research 52:7718–7728.
- . Zhang C, Wang J, Song S (2019) Preparation of a novel type of flame retardant diatomite and its application in silicone rubber composites. Advanced Powder Technology 30:1567–1575.
- . Wang R-M, Zheng S-R, Zheng Y-P (2011) Polymer matrix composites and technology. Woodhead Publishing Limited, UK.
- . Jin F-L, Li X, Park S-J (2015) Synthesis and application of epoxy resins: A review. J Ind Eng Chem 29:1–11.
- . Liu Y-L, Hsu C-Y, Wei W-L, Jeng R-J (2003) Preparation and thermal properties of epoxy-silica nanocomposites from nanoscale colloidal silica. Polymer 44:5159–5167.
- . Kosbar LL, Gelorme JD, Japp RM, Fotorny WT (2000) Introducing biobased materials into the electronics industry. Journal of Industrial Ecology 4:93–105.
- . Pan H (2011) Synthesis of polymers from organic solvent liquefied biomass: A review. Renewable Sustainable Energy Rev 15:3454–3463.
- . Nikafshar S, Zabihi O, Hamidi S, et al (2017) A renewable bio-based epoxy resin with improved mechanical performance that can compete with DGEBA. RSC Advances 7:8694–8701.
- . Nguyen Q-B, Nguyen N-H, Rios de Anda A, et al (2020) Photocurable bulk epoxy resins based on resorcinol derivative through cationic polymerization. J Appl Polym Sci 137:10. https://doi.org/10.1002/app.49051
- . Bourne LB, Milner FJM, Alberman KB (1959) Health problems of epoxy resins and amine-curing agents. Occup Environ Med 16:81–97. https://doi.org/10.1136/oem.16.2.81
- . Nguyen Q-B, Vahabi H, Rios de Anda A, et al (2021) Dual UV-thermal curing of biobased resorcinol epoxy resin-diatomite composites with improved acoustic performance and attractive flame retardancy behavior. Sus Chem 2:24–48.
- . Bulut U, Crivello JV (2005) Investigation of the reactivity of epoxide monomers in photoinitiated cationic polymerization. Macromolecules 38:3584–3595.
- . Goethals E, Duprez F (2007) Carbocationic polymerizations. Prog Polym Sci 32:220–246.
- . (2003) ASTM D790-03: Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials.
- . Huggett C (1980) Estimation of rate of heat release by means of oxygen consumption measurements. Fire and Materials 4:61–65.
- . Ali MS, Mohamed Ariff AH, Jaafar CNA, et al (2017) Factors affecting the porosity and mechanical properties of porous ceramic composite materials. In: Reference Module in Materials Science and Materials Engineering. Elsevier.
- . Bifulco A, Parida D, Salmeia KA, et al (2020) Fire and mechanical properties of DGEBA-based epoxy resin cured with a cycloaliphatic hardener: Combined action of silica, melamine and DOPO-derivative. Materials & Design 193:108862.
- . Patel PS, Shepherd DE, Hukins DW (2008) Compressive properties of commercially available polyurethane foams as mechanical models for osteoporotic human cancellous bone. BMC Musculoskelet Disord 9.
- . Yang S-Y (2018) Advanced polyimide materials: Synthesis, characterization, and applications. Elsevier, Amsterdam, Netherlands.
- . Butler S, Fotsing ER, Ross A (2019) Acoustic thermoset open-cell foams produced by particulate leaching process. J Mater Sci 54:12553–12572.
- . Sonnier R, Vahabi H, Ferry L, Lopez-Cuesta J-M (2012) Pyrolysis-combustion flow calorimetry: A powerful tool to evaluate the flame retardancy of polymers. In: Morgan AB, Wilkie CA, Nelson GL (eds) Fire and Polymers VI: New Advances in Flame Retardant Chemistry and Science. American Chemical Society, Washington, DC, pp 361–390.
- . (2020) ASTM D7309-20: Standard test method for determining flammability characteristics of plastics and other solid materials using microscale combustion calorimetry.
- . Lyon RE, Walters RN (2002) A microscale combustion calorimeter. Federal Aviation Administration, Office of Aviation Research Washington, DC, U.S.
- . Wu H, Sulkis M, Driver J, et al (2018) Multi-functional ULTEMTM1010 composite filaments for additive manufacturing using Fused Filament Fabrication (FFF). Additive Manufacturing 24:298–306.
- . Butnaru I, Bruma M, Gaan S (2017) Phosphine oxide based polyimides: structure–property relationships. RSC Advances 7:50508–50518.
- . Schartel B, Wilkie CA, Camino G (2016) Recommendations on the scientific approach to polymer flame retardancy: Part 1—Scientific terms and methods. Journal of Fire Sciences 34:447–467.