##common.pageHeaderLogo.altText##
Tạp chí Vật liệu & Xây dựng - Bộ Xây dựng

ISSN:

Website: www.jomc.vn

Evatluation of various properties of portland cement at high temperatures utilizing roof tile waste as mineral additives

Phuong Do Thi , Quang Ngyen Van , Duc Vu Minh

Abstract

Temperature, Compressive strengthHeat-resistant materials are essential in the building materials industry and play an important role in civil construction in some items requiring heat and fire resistance. Research and development of heat-resistant materials using Portland cement and industrial waste contribute to solving the country's need for heat-resistant materials. The article introduces the use of roof tile waste as a fine mineral additive to improve the properties of Portland cement towards making mortar, heat-resistant concrete for construction works. The shrinkage and compressive strength of the binder at temperatures of 100, 200, 400, 600, 800, and 1000oC are determined. Thermal Gravimetric analysis and Scanning Electron Microscopy are also shown in this paper. The results show that tile powder with 30% content to replace Portland cement can make a binder working up to 800oC; the sample has a shrinkage of 1.19% and a residual compressive strength of 53.4%.

References

  1. Remnev, V.V., “Heat-resistant properties of cement stone with finely milled refractory additives.,” Refract. Ind. Ceram., vol. 37(5), pp. 151–152, 1996.
  2. Đỗ Thị Phượng, Nguyễn Ngọc Lâm Nguyễn Nhân Hoà, Vũ Minh Đức, “Thành phần và vi cấu trúc của chất kết dính sử dụng xi măng poóclăng và tro bay ở nhiệt độ cao,” Tạp Chí Khoa Học Công Nghệ Xâ Dựng KHCNXD - ĐHXD, vol. 15 (6V), pp. 137–145, 2021, https://doi.org/10.31814/stce.huce(nuce)2021-15(6V)-12.
  3. Tanyildizi, H., Coskun, A., “The effect of high temperature on compressive strength and splitting tensile strength of structural lightweight concrete containing fly ash,” Constr. Build. Mater., vol. 22(11), pp. 2269–2275, 2008, https://doi.org/10.1016/j.conbuildmat.2007.07.033.
  4. Rehsi, S.S., Garg, S.K., “Heat resistance of Portland fly ash cement,” Cement, vol. 4(2), pp. 14–16, 1976.
  5. Abid Nadeem, Shazim Ali Memon, Tommy Yiu Lo, “The performance of Fly ash and Metakaolin concrete at elevated temperatures,” Constr. Build. Mater., vol. 62, pp. 67–76, 2014, https://doi.org/10.1016/j.conbuildmat.2014.02.073.
  6. Aydın, S., & Baradan, B., “Effect of pumice and fly ash incorporation on high temperature resistance of cement based mortars,” Cem. Concr. Res., vol. 37(6), pp. 988–995, 2007, https://doi.org/10.1016/j.cemconres.2007.02.005.
  7. Khan, M.S. & Abbas, H., “Effect of elevated temperature on the behavior of high volume fly ash concrete,” KSCE J. Civ. Eng. Vol., vol. 19, pp. 1825–1831, 2015.
  8. Mohd Mustafa Al Bakri Abdullah et al, “Fly Ash Porous Material using Geopolymerization Process for High Temperature Exposure,” Int. J. Mol. Sci., vol. 13(4), pp. 4388–4395, 2012, https://doi.org/10.3390/ijms13044388.
  9. Li, Q., Li, Z., Yuan, G., “Effects of elevated temperatures on properties of concrete containing ground granulated blast furnace slag as cementitious material,” Constr. Build. Mater., vol. 35, pp. 687–692, 2012, https://doi.org/10.1016/j.conbuildmat.2012.04.103.
  10. Karahan, O., “Transport properties of high volume fly ash or slag concrete exposed to high temperature,” Constr. Build. Mater., vol. 152, pp. 898–906, 2017, https://doi.org/10.1016/j.conbuildmat.2017.07.051 Get rights and content.
  11. Heikal, M., El-Diadamony, H., Sokkary, T.M., Ahmed, I.A., “Behavior of composite cement pastes containing microsilica and fly ash at elevated temperature,” Constr. Build. Mater., vol. 38, pp. 1180-1190., 2013.
  12. Thi Phuong Do, Van Quang Nguyen, Minh Duc Vu, “A Study on Property Improvement of Cement Pastes Containing Fly Ash and Silica Fume After Treated at High Temperature,” in Proceedings of the International Conference GTSD 2020, Computational Intelligence methods for Green technology and Sustainable Development, Springer, 2021, pp. 532–542. https://doi.org/10.1007/978-3-030-62324-1_45.
  13. Ghandehari, M., Behnood, A., Khanzadi, M., “Residual mechanical properties of high-strength concretes after exposure to elevated temperature,” J Mater Civ. Eng ASCE, pp. 59–64, 2010.
  14. Hlystov, A. I., Shirokov, V. A., & Vlasov, A. V., “Efficiency Improvement of Heat-resistant Concrete through the Use of Sludge Technogenic Raw Material,” Procedia Eng., vol. 111, pp. 290–296, 2015, https://doi.org/10.1016/j.proeng.2015.07.091.
  15. Durgun, M.Y., “Experimental research on gypsum-based mixtures containing recycled roofing tile powder at ambient and high temperatures,” Constr. Build. Mater., vol. 285, p. 122956, 2012, https://doi.org/10.1016/j.conbuildmat.2021.122956.
  16. Đỗ Thị Phượng, Nguyễn Văn Đồng, “Sử dụng xi măng poóclăng hỗn hợp chế tạo chất kết dính chịu nhiệt,” Tạp Chí Khoa Học Và Công Nghệ ĐHĐN, vol. 8 (69), pp. 43–49, 2013.
  17. Nguyen, N.L., “Heat resistant mortar using Portland cement and waste clay bricks,” in CIGOS 2019, Innovation for Sustainable Infrastructure, 2019. https://doi.org/10.1007/978-981-15-0802-8_86.
  18. Wild, S., Khati, B., Addis, S.D., Concrete in the Service of Mankind— Concrete for Environment Enhancement. Publication E & Fn Spon, Dundee, 1996.
  19. Đỗ Thị Phượng, Vũ Minh Đức, “Tính chất của chất kết dính sử dụng phụ gia tro bay và ngói đất sét nung ở nhiệt độ cao,” Tạp Chí Vật Liệu Xây Dựng - Bộ Xây Dựng, vol. 11(6), pp. 49–54, 2021, https://doi.org/10.54772/jomc.6.2021.209.
  20. Đỗ Thị Phượng, Vũ Minh Đức, “Tối ưu hoá thành phần bê tông sử dụng tro xỉ nhiệt điện và bột ngói đất sét nung ở nhiệt độ cao,” Tạp Chí Khoa Học Công Nghệ Xâ Dựng KHCNXD - ĐHXD, vol. 15 (6V), pp. 125–136, 2021, https://doi.org/10.31814/stce.huce(nuce)2021-15(6V)-11.
  21. Hager, I., “Behaviour of cement concrete at high temperature,” Bull. Pol. Acad. Sci. Tech. Sci., no. 61(1), pp. 145–154, 2013.
  22. Klieger, P., Lamond, J., “Significance of tests and properties of concrete and concrete-making materials,” ASTM Int., 1994.