ISSN:
Website: www.jomc.vn
Nghiên cứu tổng quan về bê tông Geopolyme siêu tính năng
Tóm tắt
Bê tông geopolyme là một loại bê tông mới sử dụng vật liệu silicat nhôm được kích hoạt bởi các dung dịch kiềm mạnh. Vật liệu này mang lại những lợi thế đáng kể so với bê tông truyền thống gốc xi măng Portland, đặc biệt là về các tính chất nhiệt, cơ học, độ bền và tác động môi trường thấp hơn. Bê tông geopolymer siêu tính năng (BTGSTN) là một loại bê tông geopolymer nâng cao, được phát triển để đáp ứng nhu cầu ngày càng tăng về vật liệu xây dựng siêu tính năng, thân thiện với môi trường và tiết kiệm chi phí. Bài báo này cung cấp một đánh giá toàn diện về những tiến bộ mới nhất trong phát triển BTGSTN, thảo luận về các tính chất kỹ thuật và việc chế tạo, các yếu tố môi trường, thiết kế thành phần cấp phối, tính công tác, tính chất cơ học, độ bền.
Tài liệu tham khảo
- Mabroum, S., et al., Mine wastes based geopolymers: A critical review. Cleaner Engineering and Technology, 2020. 1: p. 100014.
- Xu, S., et al., Development and preliminary mix design of ultra-high-performance concrete based on geopolymer. Construction and Building Materials, 2021. 308: p. 125110.
- Li, N., et al., Composition design and performance of alkali-activated cements. Materials and Structures, 2017. 50(3): p. 178.
- Li, N., et al., A review on mixture design methods for geopolymer concrete. Composites Part B: Engineering, 2019. 178: p. 107490.
- Li, N., et al., Effect of Poly(phthalazinone ether ketone) with amino groups on the interfacial performance of carbon fibers reinforced PPBES resin. Composites Science and Technology, 2017. 149: p. 178-184.
- Oh, J.E., et al., The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers. Cement and Concrete Research, 2010. 40(2): p. 189-196.
- Qaidi, S.M.A., et al., Ultra-high-performance geopolymer concrete: A review. Construction and Building Materials, 2022. 346: p. 128495.
- Wetzel, A. and B. Middendorf, Influence of silica fume on properties of fresh and hardened ultra-high performance concrete based on alkali-activated slag. Cement and Concrete Composites, 2019. 100: p. 53-59.
- Ambily, P.S., et al., Development of ultra-high-performance geopolymer concrete. Magazine of Concrete Research, 2014. 66(2): p. 82-89.
- Memon, F.A., M.F. Nuruddin, and N. Shafiq, Effect of silica fume on the fresh and hardened properties of fly ash-based self-compacting geopolymer concrete. International Journal of Minerals, Metallurgy, and Materials, 2013. 20(2): p. 205-213.
- Qaidi, S., Ultra-high-performance fiber-reinforced concrete: Fresh properties. University of Duhok, Duhok, 2022.
- Nugteren, H., et al., High Strength Geopolymers from Fractionated and Pulverized Fly Ash. 3rd World of Coal Ash, WOCA Conference - Proceedings, 2009.
- Liu, J., et al., Investigations on the response of ceramic ball aggregated and steel fibre reinforced geopolymer-based ultra-high performance concrete (G-UHPC) to projectile penetration. Composite Structures, 2021. 255: p. 112983.
- Liu, Y., et al., Mechanical and fracture properties of ultra-high performance geopolymer concrete: Effects of steel fiber and silica fume. Cement and Concrete Composites, 2020. 112: p. 103665.
- Liu, Y., et al., Development of ultra-high performance geopolymer concrete (UHPGC): Influence of steel fiber on mechanical properties. Cement and Concrete Composites, 2020. 112: p. 103670.
- Karimipour, A. and J. de Brito, RETRACTED: Influence of polypropylene fibres and silica fume on the mechanical and fracture properties of ultra-high-performance geopolymer concrete. Construction and Building Materials, 2021. 283: p. 122753.
- Kathirvel, P. and S. Sreekumaran, Sustainable development of ultra high performance concrete using geopolymer technology. Journal of Building Engineering, 2021. 39: p. 102267.
- Alharbi, Y.R., et al., Engineering properties of alkali activated materials reactive powder concrete. Construction and Building Materials, 2021. 271: p. 121550.
- Al-Majidi, M.H., et al., Development of geopolymer mortar under ambient temperature for in situ applications. Construction and Building Materials, 2016. 120: p. 198-211.
- Hadi, M.N.S., N.A. Farhan, and M.N. Sheikh, Design of geopolymer concrete with GGBFS at ambient curing condition using Taguchi method. Construction and Building Materials, 2017. 140: p. 424-431.
- Wardhono, A., D.W. Law, and A. Strano, The Strength of Alkali-activated Slag/fly Ash Mortar Blends at Ambient Temperature. Procedia Engineering, 2015. 125: p. 650-656.
- Najafi Kani, E. and A. Allahverdi, Effects of curing time and temperature on strength development of inorganic polymeric binder based on natural pozzolan. Journal of Materials Science, 2009. 44(12): p. 3088-3097.
- Yoo, D.-Y., et al., Effects of fiber shape, aspect ratio, and volume fraction on flexural behavior of ultra-high-performance fiber-reinforced cement composites. Composite Structures, 2017. 174: p. 375-388.
- Althoey, F., et al., Determining engineering properties of ultra-high-performance fiber-reinforced geopolymer concrete modified with different waste materials. PLOS ONE, 2023. 18(5): p. e0285692.
- Tahwia, A.M., et al., Characteristics of eco-friendly ultra-high-performance geopolymer concrete incorporating waste materials. Ceramics International, 2022. 48(14): p. 19662-19674.
- Althoey, F., et al., Impact of sulfate activation of rice husk ash on the performance of high strength steel fiber reinforced recycled aggregate concrete. Journal of Building Engineering, 2022. 54: p. 104610.
- Wu, Z., et al., Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete. Construction and Building Materials, 2016. 103: p. 8-14.
- Yoo, D.-Y. and N. Banthia, Mechanical properties of ultra-high-performance fiber-reinforced concrete: A review. Cement and Concrete Composites, 2016. 73: p. 267-280.
- Wang, W. and T. Noguchi, Alkali-silica reaction (ASR) in the alkali-activated cement (AAC) system: A state-of-the-art review. Construction and Building Materials, 2020. 252: p. 119105.
- Wu, Z., C. Shi, and W. He, Comparative study on flexural properties of ultra-high performance concrete with supplementary cementitious materials under different curing regimes. Construction and Building Materials, 2017. 136: p. 307-313.
- Abadel, A., et al., Experimental study of shear behavior of CFRP strengthened ultra-high-performance fiber-reinforced concrete deep beams. Case Studies in Construction Materials, 2022. 16: p. e01103.
- Aydın, S. and B. Baradan, The effect of fiber properties on high performance alkali-activated slag/silica fume mortars. Composites Part B: Engineering, 2013. 45(1): p. 63-69.
- Gülşan, M.E., et al., Development of fly ash/slag based self-compacting geopolymer concrete using nano-silica and steel fiber. Construction and Building Materials, 2019. 211: p. 271-283.
- Mousavinejad, S.H.G. and M. Sammak, Strength and chloride ion penetration resistance of ultra-high-performance fiber reinforced geopolymer concrete. Structures, 2021. 32: p. 1420-1427.
- Althoey, F., et al., Experimental study on the properties of ultra-high-strength geopolymer concrete with polypropylene fibers and nano-silica. PLOS ONE, 2023. 18(4): p. e0282435.
- Ahmed, H.U., et al., Compressive strength of geopolymer concrete modified with nano-silica: Experimental and modeling investigations. Case Studies in Construction Materials, 2022. 16: p. e01036.
- Nodehi, M., A comparative review on foam-based versus lightweight aggregate-based alkali-activated materials and geopolymer. Innovative Infrastructure Solutions, 2021. 6(4): p. 231.
- Bernal, S.A., et al., Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags. Cement and Concrete Research, 2010. 40(6): p. 898-907.
- Ranjbar, N., A. Kashefi, and M.R. Maheri, Hot-pressed geopolymer: Dual effects of heat and curing time. Cement and Concrete Composites, 2018. 86: p. 1-8.
- Gao, X., et al., Evaluation of hybrid steel fiber reinforcement in high performance geopolymer composites. Materials and Structures, 2017. 50(2): p. 165.
- Smarzewski, P. and D. Barnat-Hunek, Property Assessment of Hybrid Fiber-Reinforced Ultra-High-Performance Concrete. International Journal of Civil Engineering, 2018. 16(6): p. 593-606.
- Ramezanianpour, A.A., et al., Laboratory study on the effect of polypropylene fiber on durability, and physical and mechanical characteristic of concrete for application in sleepers. Construction and Building Materials, 2013. 44: p. 411-418.
- Ede, A. and A. Ige, Optimal Polypropylene Fiber Content for Improved Compressive and Flexural Strength of Concrete. IOSR Journal of Mechanical and Civil Engineering, 2014. 11: p. 129-135.
- Provete Vincler, J., et al., A modified accelerated chloride migration tests for UHPC and UHPFRC with PVA and steel fibers. Cement and Concrete Research, 2019. 117: p. 38-44.
- Xu, D., et al., On the future of Chinese cement industry. Cement and Concrete Research, 2015. 78: p. 2-13.
- Qaidi, S.M.A. and Y.S.S. Al-Kamaki, State-of-the-art review: concrete made of recycled waste PET as fine aggregate. Duhok Univ, 2021. 23(2): p. 412-429.
- Shi, C., B. Qu, and J.L. Provis, Recent progress in low-carbon binders. Cement and Concrete Research, 2019. 122: p. 227-250.
- Ahmed, S.N., et al., Thermal conductivity and hardened behavior of eco-friendly concrete incorporating waste polypropylene as fine aggregate. Materials Today: Proceedings, 2022. 57: p. 818-823.
- Qaidi, S., Ultra-high-performance fiber-reinforced concrete: Applications. University of Duhok, Duhok, 2022.
- Qaidi, S.M., Ultra-high-performance fiber-reinforced concrete: Cost assessment. University of Duhok, Duhok, 2022.
- Qaidi, S., Ultra-high-performance fiber-reinforced concrete: Durability properties. University of Duhok, Duhok, 2022.
- Adesanya, E., et al., One-part geopolymer cement from slag and pretreated paper sludge. Journal of Cleaner Production, 2018. 185: p. 168-175.
- Abdollahnejad, Z., et al., Microstructural Analysis and Strength Development of One-Part Alkali-Activated Slag/Ceramic Binders Under Different Curing Regimes. Waste and Biomass Valorization, 2020. 11(6): p. 3081-3096.
- Abdel-Gawwad, H.A. and K.A. Khalil, Application of thermal treatment on cement kiln dust and feldspar to create one-part geopolymer cement. Construction and Building Materials, 2018. 187: p. 231-237.
- Qaidi, S.M., et al., Rubberized geopolymer composites: A comprehensive review. Ceramics International, 2022. 48(17): p. 24234-24259.
- Provis, J.L., Alkali-activated materials. Cement and concrete research, 2018. 114: p. 40-48.
- Ahmed, H.U., et al., Compressive Strength of Sustainable Geopolymer Concrete Composites: A State-of-the-Art Review. Sustainability, 2021. 13(24): p. 13502.

