ISSN:
Website: www.jomc.vn
Research on the behavior of concrete tunnel structures due to the heat of cement hydration using the finite element method
Abstract
The phenomenon of cracking due to heat of cement hydration in concrete structures is one of the main problems affecting the feasibility and durability of mountain tunnel or urban underground projects. Given the strong development needs of underground traffic works in large cities in Vietnam, it is urgent to study the behavior of concrete tunnel structures due to heat of cement hydration through analysis of temperature fields, thermal stress fields or thermal cracking index fields to find appropriate solutions to prevent and control the risk of cracking. This paper presents the results of analyzing the behavior due to heat of cement hydration in concrete tunnel structures by numerical simulation using the finite element method with the support of Midas Civil 2022 software through the use of surface annealing combined with phase construction. The research results provide a scientific basis for controlling cracking due to heat of cement hydration, contributing to improving the efficiency of design and construction of infrastructure works in general and concrete tunnel structures in particular.
References
- Korda, E., De Schutter, G., & Aggelis, D. G. (2024). Acoustic signatures of hydration and microcracking in early-age concrete. Developments in the Built Environment, 17.
- Qin, C., Gong, J., Xie, G., He, J., Liu, L., Yang, H., & Deng, C. (2023). Non-hypothetical projection pursuit regression for the prediction of hydration heat of Portland-cement-based cementitious system. Heliyon, 9(9).
- Khoa, H. N., & Công, V. C. (2012). Phân tích trường nhiệt độ và ứng suất nhiệt trong bê tông khối lớn bằng phương pháp phần tử hữu hạn. Tạp chí Khoa học Công nghệ Xây dựng, ĐHXD, 14(12).
- Bofang, Z. (2014). Thermal Stresses and Temperature Control of Mass Concrete. Elsevier. https://doi.org/10.1016/C2012-0-06038-3.
- Schackow, A., Effting, C., Gomes, I. R., Patruni, I. Z., Vicenzi, F., & Kramel, C. (2016). Temperature variation in concrete samples due to cement hydration. Applied thermal engineering, 103: 1362-1369.
- Do, T. A., Hoang, T. T., Bui-Tien, T., Hoang, H. V., Do, T. D., & Nguyen, P. A. (2020). Evaluation of heat of hydration, temperature evolution and thermal cracking risk in high-strength concrete at early ages. Case Studies in Thermal Engineering, 21: 100658.
- Liu, X., Zhang, C., Chang, X., Zhou, W., Cheng, Y., & Duan, Y. (2015). Precise simulation analysis of the thermal field in mass concrete with a pipe water cooling system. Applied Thermal Engineering, 78: 449-459.
- Tang, L. V., Nguyen, C. T., Bulgakov, B., Pham, A. N. (2018). Composition and early-age temperature regime in massive concrete foundation. In MATEC Web of Conferences, 196: 04017.
- Rahimi, A. and Noorzaei, J. (2011). Thermal and structural analysis of roller compacted concrete (R.C.C) dams by finite element code. Australian Journal of Basic and Applied Sciences, 5(12): 2761–2767.
- TCVN 9341:2012. Bê tông khối lớn – Thi công và nghiệm thu. Bộ Khoa học và Công nghệ.
- Liu, X., Yuan, Y., & Su, Q. (2014). Sensitivity analysis of the early-age cracking risk in an immersed tunnel. Structural Concrete., 15(2): 179–190. https://doi.org/10.1002/suco.201300064.
- Chen, Y. Y., Chen, S. Y., Yang, C. J., & Chen, H. T. (2017). Effects of insulation materials on mass concrete with pozzolans. Construction and Building Materials, 137: 261-271. https://doi.org/10.1016/j.conbuildmat.2017.01.059.
- Zhang, X. F., Li, S. Y., Li, Y. L., Ge, Y., & Li, H. (2011). Effect of superficial insulation on roller-compacted concrete dams in cold regions. Advances in Engineering Software, 42(11): 939-943. 10.1016/j.advengsoft.2011.06.004
- Tong, Z. (2015, July). Cause and Influence of Mass Concrete Crack. International Conference on Chemical, Material and Food Engineering: 497-499.
- Lawrence, C. D. (1995). Mortar expansions due to delayed ettringite formation. Effects of curing period and temperature. Cement and Concrete Research, 25(4): 903-914.
- Taylor, H. F. W., Famy, C., & Scrivener, K. L. (2001). Delayed ettringite formation. Cement and concrete research, 31(5): 683-693.
- Odler, I., & Chen, Y. (1995). Effect of cement composition on the expansion of heat-cured cement pastes. Cement and Concrete Research, 25(4): 853-862.
- Burgher, B., Thibonnier, A., Folliard, K. J., Ley, T., & Thomas, M. (2008). Investigation of the internal stresses caused by delayed ettringite formation in concrete. University of Texas at Austin. Center for Transportation Research.
- Pavoine, A., Brunetaud, X., & Divet, L. (2012). The impact of cement parameters on Delayed Ettringite Formation. Cement and Concrete Composites, 34(4): 521-528.
- Heinz, D., & Ludwig, U. (1986). Mechanism of subsequent ettringite formation in mortars and concretes after heat treatment. In Proceeding of the 8th Int. Congr. on the Chem. of Cem.
- Fairbairn, E. M., Silvoso, M. M., Toledo Filho, R. D., Alves, J. L., & Ebecken, N. F. (2004). Optimization of mass concrete construction using genetic algorithms. Computers & structures, 82(2-3).
- Rita, M., Fairbairn, E., Ribeiro, F., Andrade, H., & Barbosa, H. (2018). Optimization of mass concrete construction using a twofold parallel genetic algorithm. Applied Sciences, 8(3).
- Bamforth, P. B. (2007). Early-age thermal crack control in concrete. London, UK: Construction Industry Research and Information Association (CIRIA).
- Castilho, E., Schclar, N., Tiago, C., & Farinha, M. L. B. (2018). FEA model for the simulation of the hydration process and temperature evolution during the concreting of an arch dam. Engineering Structures, 174: 165-177.
- De Rojas, M. S., Luxán, M. P. D., Frías, M., & Garcia, N. (1993). The influence of different additions on portland cement hydration heat. Cement and Concrete Research, 23(1): 46-54.
- Zheng, J. L., & Wang, X. F. (2009). Influence of fly ash on early-age cracking behavior of high-flowing concrete. Journal of Central South University of Technology, 16(2): 312-319.
- Groth, P., & Hedlund, H. (1998). Air cooling of concrete by means of embedded cooling pipes—Part II: Application in design. Materials and Structures, 31: 387-392.
- Minh, L. V., & Mạnh, L. Đình. (2024). Phân tích sự ảnh hưởng của các thông số ống thoát nhiệt đến trường nhiệt độ và trường chỉ số nứt của kết cấu bê tông khối lớn trong giai đoạn nhiệt thủy hóa. Tạp Chí Khoa Học Công Nghệ Xây Dựng (TCKHCNXD) - ĐHXDHN, 18(4V): 160-175.
- Hà, L. H., & Khoa, H. N., & Thực., L.V., & Công, V. C. (2022). Nghiên cứu cấp phối và phân chia lớp đổ khi thi công kết cấu bê tông khối lớn theo phương pháp đổ bê tông liên tục với cấp phối tỏa nhiệt khác nhau. Tạp chí Kết cấu & Công nghệ Xây dựng, 30.
- Công, V. C. (2023). Nghiên cứu xác định vị trí phân chia các lớp đổ tối ưu của kết cấu bê tông khối lớn thi công bằng phương pháp đổ liên tục kết hợp phân chia lớp đổ tỏa nhiệt khác nhau. Tạp chí Vật liệu và Xây dựng-Bộ Xây dựng, 13(04).
- Adam, D., & Markiewicz, R. (2009). Energy from earth-coupled structures, foundations, tunnels and sewers. Geotechnique, 59(3): 229–236. https://doi.org/10.1680/geot.2009.59.3.229
- Unterberger, W., Hofinger, H., Grünstäudl, T., Adam, D., & Markiewicz, R. (2004). Utilization of Tunnels as Sources of Ground Heat and Cooling - Practical Applications in Austria. Proceedings of the ISRM International Symposium 3rd ARMS, Kyoto: 421-426.
- Franzius, J. N., & Pralle, N. (2011). Turning segmental tunnels into sources of renewable energy. Proceedings of the institution of civil engineers-civil engineering, 164(1): 35-40. https://doi.org/10.1680/cien.2011.164.1.35
- Barla, M., & Perino, A. (2014). Geothermal heat from the Turin metro south extension tunnels. Proceedings of the Worl tunnel Congress 2014:Tunnels for a better life.
- Barla, M., & Di Donna, A. (2018). Energy tunnels: concept and design aspects. Underground Space, 3(4): 268-276. https://doi.org/10.1016/j.undsp.2018.03.003
- Barla, M., Di Donna, A., & Perino, A. (2016). Application of energy tunnels to an urban environment. Geothermics, 61(104-113). https://doi.org/10.1016/j.geothermics.2016.01.014
- Barla, M., DI DONNA, A., & Insana, A. (2017). Energy tunnel experimental site in Turin metro. 15th International Conference of the International Association for Computer Methods and Advances in Geomechanics (15th IACMAG): 1-10.
- Di Donna, A., Barla, M., & Amis, T. (2017). Energy Geostructures: Analysis from research and systems installed around the World. DFI 2017: 42nd Annual Conference on Deep Foundations: 1-11.
- Nguyen, T. C., Sofi, M., & Hoang, Q. L. (2024). Thermal stress evolution of tunnel wall during construction evolucija termičkih napona u zidu tunela u izgradnji. structural integrity and life, 24(3): 373–379. https://doi.org/10.69644/ivk-2024-03-0372
- Tiêu chuẩn Việt Nam, TCVN 5729:2012. Đường ô tô cao tốc - Yêu cầu thiết kế. Hà Nội 2012.
- Institute, Japan Concrete (2016). Guidelines for Control of Cracking of Mass Concrete. Japan.
- Technology, Midas Information (2004). Heat of hydration - Analysis analysis manual version 7.0.1.
- JCI (2008). Guidelines for control of cracking of mass concrete.

