##common.pageHeaderLogo.altText##
Tạp chí Vật liệu & Xây dựng - Bộ Xây dựng

ISSN:

Website: www.jomc.vn

Research on using red mud as a substitute for clay in the production of floor tiles and roof tiles

Tai Nguyen Huu , Trung Nguyen Van , Cuong Ngo Hung , Quyen Nguyen Thi Le

Abstract

In the aluminum manufacturing industry, the main activity includes the production of Al2O3 oxide (alumina) from bauxite ore. In fact, the Bayer process was the only one used to produce alumina that produced large amounts of a hazardous waste known as red mud. Among the proposed alternatives that consider red mud as a useful by-product, the incorporation of red mud into the production of floor tiles and roof tiles allows alarge amount to be used as a building material product. Some works have studied the alternative but limited to mixing clay with red mud to produce fired ceramics. In this study, a processing method using red mudand clay was proposed to produce floor tiles and roof tiles by plastic extrusion method. The red mud andclay mixes are all processed before shaping the joinery and fired at 850oC, 950oC and 1050oC. The results show thatred mud and clay after processing, shaping and firing at 1050oC meet the criteria according toTCVN 7483:2005.

References

  1. . Kirwan, L.J.; Hartshorn, A.; Mcmonagle, J.B.; Fleming, L.; Funnell, D. Chemistry of bauxite residue neutralisation and aspects to implementation. Int. J. Miner. Process. 2013, 119, 40–50.
  2. . Evans, K.; Nordheim, E.; Tsesmelis, K. Bauxite residue management. In Light Metals; Springer: Cham, Switzerland, 2012; pp. 61–66.
  3. . Tsakiridis, P.E.; Agatzini-Leonardou, S.; Oustadakis, P. Red mud addition in the raw meal for the production of portland cement clinker. J. Hazard. Mater. 2004, 116, 103–110.
  4. . Power, G.; Gräfe, M.; Klauber, C. Bauxite residue issues: I. Current management, disposal and storage practices. Hydrometallurgy 2011, 108, 33–45.
  5. . Wang, W.; Pranolo, Y.; Chu, Y.C. Recovery of scandium from synthetic red mud leach solutions by solvent extraction with D2EHPA. Sep. Purif. Technol. 2013, 108, 96–102.
  6. . Evans, K. The history, challenges, and new developments in the management and use of bauxite residue. J. Sustain. Metall. 2016, 2, 316–331.
  7. . Cusack, P.B.; Healy, M.G.; Ryan, P.C.; Burke, I.T.; O’ Donoghue, L.M.T.; Ujaczki, É.; Courtney, R. Enhancement of bauxite residue as a low-cost adsorbent for phosphorus in aqueous solution, using seawater and gypsum treatments. J. Clean. Prod. 2018, 179, 217–224.
  8. . Mukiza, E.; Zhang, L.L.; Liu, X.; Zhang, N. Utilization of red mud in road base and subgrade materials: A review. Resour. Conserv. Recycl. 2019, 141, 187–199.
  9. . Altundo ˘gan, H.S.; Altundo ˘gan, S.; Tümen, F.; Bildik, M. Arsenic removal from aqueous solutions by adsorption on red mud. Waste Manag. 2000, 20, 761–767.
  10. . Mayes, W.M.; Burke, I.T.; Gomes, H.I.; Anton, Á.D.; Molnár, M.; Feigl, V.; Ujaczki, É. Advances in understanding environmental risks of red mud after the Ajka spill, Hungary. J. Sustain. Metall. 2016, 2, 332–343.
  11. . Lyu, F.; Gao, J.; Sun, N.; Liu, R.; Sun, X.; Cao, X.; Wang, L.; Sun, W. Utilisation of propyl gallate as a novel selective collector for diaspore flotation. Miner. Eng. 2019, 131, 66–72.
  12. . Balomenos, E.; Giannopoulou, I.; Panias, D.; Paspaliaris, I.; Perry, K.; Boufounos, D. Efficient and Complete Exploitation of the Bauxite Residue (Red Mud) Produced in the Bayer Process. In Proceedings of the European Metallurgical Conference, Düsseldorf, Germany, 23–26 June 2011.
  13. . András, G.; Nóra, K.; Beatrix, T.; Ágnes, R.; András, H.; Kornélia, I.; Ilona, N.K.; Dorottya, C.M.; Ádám, T.; Aladár, C. The red mud accident in ajka (hungary): Characterization and potential health effects of fugitive dust. Environ. Sci. Technol. 2011, 45, 1608–1615.
  14. . Liang, G.; Chen, W.; Nguyen, A.V.; Nguyen, T.A.H. Red mud carbonation using carbon dioxide: Effects of carbonate and calcium ions on goethite surface properties and settling. J. Colloid Interface Sci. 2018, 517, 230–238.
  15. . James, J.P.; Tobias, H.; Andrei, G.; Tkaczyk, A.H.; Yiannis, P.; Anna, B.R. Identifying hotspots of environmental impact in the development of novel inorganic polymer paving blocks from bauxite residue. Resour. Conserv. Recycl. 2018, 138, 87–98.
  16. . Belviso, C.; Agostinelli, E.; Belviso, S.; Cavalcante, F.; Pascucci, S.; Peddis, D.; Varvaro, G.; Fiore, S. Synthesis of magnetic zeolite at low temperature using a waste material mixture: Fly ash and red mud. Microporous Mesoporous Mater. 2015, 202, 208–216.
  17. . Belviso, C.; Kharchenko, A.; Agostinelli, E.; Cavalcante, F.; Peddis, D.; Varvaro, G.; Yaacoub, N.; Mintova, S. Red mud as aluminium source for the synthesis of magnetic zeolite. icroporous Mesoporous Mater. 2018, 270, 24–29.
  18. . Hua, Y.; Heal, K.V.; Frieslhanl, W. The use of red mud as an immobiliser for metal/metalloid-contaminated soil: A review. J. Hazard. Mater. 2017, 325, 17–30.
  19. . Liu, S.; Guan, X.; Zhang, S.; Xu, C.; Li, H.; Zhang, J. Sintering red mud based imitative ceramic bricks with CO2 emissions below zero. Mater. Lett. 2017, 191, 222–224.
  20. . Ujaczki, E.; Zimmermann, Y.; Gasser, C.; Molnár, M.; Feigl, V.; Lenz, M. Red mud as secondary source for critical raw materials–extraction study. J. Chem. Technol. Biotechnol. 2017, 92, 2835–2844.
  21. . Rai, S.; Wasewar, K.L.; Agnihotri, A. Treatment of alumina refinery waste (red mud) through neutralization techniques: A review. Waste Manag. Res. 2017, 35, 563–580.
  22. . Guo, T.; Yang, H.; Liu, Q.; Gu, H.; Wang, N.; Yu, W.; Dai, Y. Adsorptive removal of phosphate from aqueous solutions using different types of red mud. Water Sci. Technol. 2018.
  23. . Guan, Q.; Sun, W.; Hu, Y.; Yin, Z.; Zhang, C.; Guan, C.; Zhu, X.; Ahmed Khoso, S. Simultaneous control of particle size and morphology of α-CaSO4·1/2H2O with organic additives. J. Am. Ceram. Soc. 2019, 102, 2440–2450.
  24. . Zhang, Y.; Hu, Y.; Sun, N.; Khoso, S.A.; Wang, L.; Sun, W. A novel precipitant for separating lithium from magnesium in high Mg/Li ratio brine. Hydrometallurgy 2019, 187, 125–133.
  25. . Moya JS, Morales F, Garcia VA. Ceramic use of red mud from alumina plants. Bol Soc Esp Ceram 1987;26(1):21–9.
  26. . Pontikes Y, Rathossi C, Nikoloulos P, Angelopoulos GN, Jayaseelan DD, Lee WE. Effect of firing temperature and on sintering of ceramics made from Bayer process bauxite residue. Ceram Int 2009;35:401–7.
  27. . Alam S, Das SK, Rao BH. Characterization of coarse fraction of red mud as a civil engineering construction material. J Clean Prod 2017;168:679–91.
  28. . Xu X, Song J, Li Y, Wu J, Liu X, Zhang C. The microstructure and properties of ceramic tiles from solid wastes of Bayer red muds. Constr Build Mater 2019;212:266–74.
  29. . Knight JC, Wagh AS, Reid WA. The mechanical properties of ceramics from bauxite waste. J Mater Sci 1986;21(6):2179–84.
  30. . Filippo PAS, Usai G. The recycling of red mud from the Bayer process. Part 1. Production of masonry bricks at a firing temperature of 950 ◦ C. Ziogelindustrie Int 1988;41(2-3):67–79.
  31. . Pérez-Villarejo L, Corpás-Iglesias FA, Martínez-Martinez S, Artiaga R, Pascual-Cosp J. Manufacturing new ceramic material from clay and red mud derived from the aluminium industry. Constr Build Mater 2012;35:656–65.
  32. . He HT, Yue QY, Qi YF, Gao BY, Zhao YQ, Yu H, et al. The effect of incorporation of red mud on the properties of clay ceramic bodies. Appl Clay Sci 2012;70:67–73.
  33. . Babisk MP, Altoé TP, Lopes HJU, Prado US, Gadioli MC, Monteiro SN, et al. Properties of clay ceramic incorporated with red mud. Mater Sci Forum 2014;798-799:509–13.
  34. . Ribeiro LS, Babisk MP, Prado US, Monteiro SN, Vieira CMF. Incorporation of in natura and calcined red muds into clay ceramic. Mater Res 2015;18 supl.2:279–82.
  35. . Scribot C, Maherzi W, Benzerzour M, Mamindy-Pajany Y, Abriak NE. A laboratory-scale experimental investigation on the reuse of a modified red mud in ceramic materials production. Constr Build Mater 2018;163:21–31.

Most read articles by the same author(s)

1 2 3 4 > >>