ISSN:
Website: www.jomc.vn
Investigation of reduction of vibrations of the hook and payload on two degrees of freedom- pendulum crane trolley mathematical model by using output feedback-based control method
Abstract
Rapid velocities crane trolley operations may cause large amplitude hook and payload oscillations. These are disadvantageous to safe, precise and performance of crane operations, especially when using intelligent construction cranes for automation erections. This paper presents the investigation of output feedback - based control method for the anti-sway problem of two degrees of freedom pendulum-type crane trolley model. Practically, the angular velocities of hook and payload are always oscillated in most crane operations. Such a practical problem needs the output feedback-based controller. This paper starts with some the performance analysis when using cranes, Secondly, are some basic concepts about output feedback – based control method. Thirdly, an output feedback-based controller is designed and applied for two degrees of freedom-pendulum type crane trolley model. Fourthly, the system stability analysis is also proven in the sense of Lyapunov. Fifthly, numerical simulation results in Matlab are presented to support for the output feedback - based control method design. Finally, comments about the numerical simulation outcomes and conclusion.
References
- . Abdel- Rahman EM, Nayfeh AH, Masoud ZN. Dynamics and control of cranes: a review. J Vib Control, 2003. 9(7): p.863-908.
- . Tuan L, Janchiv A, Kim GH, Lee SG. Feedback linearization control of overhead cranes with varying cable length. In: Proceedings of International Conference on Control, Automation and Systems, Gyeonggi-do, Korea, 2011. p. 906–911.
- . Tuan L, Kim GH, Lee SG. Partial feedback linearization control of the three- dimensional overhead crane. In: Proceedings of IEEE International Conference on Automation Science and Engineering, Seoul, Korea, 2012. p. 1198–1203.
- . Wu XQ, He XX, Sun N, Fang YC. A novel anti-swing control method for 3-D overhead cranes. In: Proceedings of American Control Conference, Portland OR, USA, 2014. p. 2821–2826.
- . Maschke B, Ortega R, Van der Schaft AJ. Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation. IEEE Trans Autom Control, 2000. 45(8): p.1498–1502.
- . Karkoub MA, Zribi M. Modelling and energy based nonlinear control of crane lifters. IEE Proc Control Theory Appl, 2002. 149(3): p. 209–216.
- . Guo W, Liu D, Yi J, Zhao D. Passivity-based-control for double-pendulum-type overhead cranes. In: Proceedings of IEEE Region 10 Annual International Conference, Chiang Mai, Thailand, 2004. p. 546–549.
- . Collado J, Lozano R, Fantoni I. Control of convey-crane based on passivity. In: Proceedings of American Control Conference, Chicago IL, USA, 2000. p. 1260–1264.
- . Cao LZ, Wang HW, Niu C, Wei SB. Adaptive backstepping control of crane hoisting system. In: Proceedings of IEEE International Conference on Automation and Logistics, Qingdao, China, 2007, p. 245–248.
- . Yang JH, Yang KS. Adaptive control for 3-D overhead crane systems. In: Proceedings of American Control Conference, Minneapolis MN, USA, 2006. p. 1832–1837.
- . Yang TW, O’Connor WJ. Wave based robust control of a crane system. In: Proceedings of 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 2006. p. 2724–2729.
- . Uchiyama N. Robust control of rotary crane by partial-state feedback with integrator. Mechatronics, 2009. 19(8): p.1294–1302.
- . Deng JM, Becerra VM. Application of constrained predictive control on a 3D crane system. In: Proceedings of IEEE Conference on Robotics, Automation and Mechatronics, Singapore City, Singapore, 2004. p. 583–587.
- . Michels K, Klawonn F, Kruse R, Numberger A. Fuzzy control: Fundamentals, stability and design of fuzzy controllers. New York: Springer-Verlag, 2006.
- . Ross IM, Fahroo F. Pseudospectral methods for optimal motion planning of differentially flat systems. IEEE Trans Autom Control, 2004. 49(8): p. 1410–1413.
- . Zameroski D, Starr G, Wood J, Lumia R. Rapid swing-free transport of non-linear payloads using dynamic programming. J Dyn Syst Meas Control Trans ASME, 2008, 130(4), DOI:10.1115/1.2936384.
- . Da Cruz JJ, Leonardi F. Minimum-time anti-swing motion planning of cranes using linear programming. Optimum Control Appl Meth, 2013. 34(2): p. 191–201.
- . French L, Singhouse W, Seering W. An expert system for the design of input shapers. In: Proceedings of the 1999 IEEE International Conference on Control Applications, Kohala Coast-Island, USA, 1999. p. 713–718.
- . Singer N, Singhose W, Kriikku E. An input shaping controller enabling cranes to move without sway. In: Proceedings of 7th Topical Meeting on Robotics and Remote Systems, Augusta, GA, 1997. p. 225–231.
- . Sorensen K, Singhose W, Dickerson S. A controller enabling precise positioning and sway reduction in bridge and gantry cranes. Control Eng Pract, 2007. 15(7): p. 825–837.
- . Ahres, S., Aschemann, H., Sawodny, O., and Hofer, E. P., 2000, “Crane Automation by Decoupling Control of a Double Pendulum Using Two Tran-lational Actuators,” in Proceedings of the 2000 American Control Conference, Vol. 2. p. 1052–1056.
- . Tanaka, S., and Kouno, S., 1998, “Automatic Measurement and Control of the Attitude of Crane Lifters: Lifter-Attitude Measurement and Control,” Control Eng. Pract.,6(9), p. 1099–1107.
- . Ortega R, Perez JA, Nicklasson PJ, Sira-Ramirez H. Passivity-based control of Euler-Lagrange systems: Mechanical, electrical and electromechanical applications. Berlin: Springer, 2013.
- . Qian D, Tong S, Yang B, Lee S. Design of simultaneous input-shaping-based SIRMs fuzzy control for double-pendulum-type overhead cranes. Bull Pol Acad Sci-Tech Sci, 2015. 63(4): p. 887–896.
- . Kim D, Singhose W. Performance studies of human operators driving double-pendulum bridge cranes. Control Eng Practice, 2010, 18(6): 567–576.
- . Sun N, Fang C, Chen H, Lu B. Energy-based control of double pendulum cranes. In: Proceedings of IEEE Annual International Conference on Cyber Technology in Automation Control and Intelligent Systems, Shenyang, China, 2015, pp. 258–263.
- . Sun N, Fang C, Chen H, Lu B. Amplitude-saturated nonlinear output feedback anti-swing control for underactuated cranes with double-pendulum cargo dynamics. IEEE Trans Ind Electron, 2017, 64(3): 2135–2146.
- . Khalil HK. Nonlinear systems. Upper Saddle River, NJ: Prentice-Hall, 1996.
- . Xue D, Chen Y, Atherton DP. Linear feedback control: Analysis and design with MATLAB. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2007.
- . Dianwei Qian, Anti- sway control for Cranes, Design and implementation using Matlab.
- . Hồ Việt Long, Dương Minh Đức, Điều khiển chống rung cho cẩu tháp, 2017, CASD 2017.
- . Nguyễn Văn Trung, Chenglong Du, Nguyễn Trọng Quỳnh, Phạm Thị Thảo, Tổng quan chiến lược áp dụng các kỹ thuật điều khiển vòng hở để điều khiển hệ thống cầu trục, 2019, Tạp chí nghiên cứu khoa học. Trường Đại học Sao Đỏ. ISSN 1859-4190. Số 4(67). 2019.
- . Phạm Lê Công, Điều khiển chống rung cho cẩu tháp bằng phương pháp điều khiển tiền định, Luận văn Thạc sỹ kỹ thuật, 2020, Trường Đại học Bách Khoa Hà Nội.
- . Lê Mạnh Quý, Nguyễn Đức Minh, Dương Minh Đức, Nguyễn Tùng Lâm, Ngô Văn An, Điều khiển cầu trục kết hợp chống rung lắc và tránh vật cản, 2015, Hội nghị toàn quốc lần thứ 3 về Điều khiển và Tự động hoá - VCCA-2015.
- . Nguyễn Văn Hùng, Nghiên cứu xây dựng mô hình thực nghiệm, khảo sát động lực học và khả năng điều khiển ổn định của vật nâng theo phương ngang khi di chuyển xe con cầu trục” 2013, Luận văn thạc sỹ kỹ thuật chuyên ngành Kỹ thuật cơ khí; Mã số: 60520103, ĐHXD 2013. Trường Đại học Xây dựng Hà Nội.
- . Tưởng Xuân Thưởng, Dương Minh Đức, Nguyễn Tùng Lâm, Điều khiển chống rung cho cầu trục ba chiều bằng phương pháp Hybrid Shape, 2015, Hội nghị toàn quốc lần thứ 3 về Điều khiển và Tự động hoá - VCCA-2015.
- . Cao Xuân Cường và Trần Đình Khôi Quốc, Điều khiển mô hình con lắc ngược sử dụng bộ điều khiển RQL với hai vòng phản hồi, 2018, Tạp chí điện tử và công nghệ, Đại học Đà Nẵng, 2018. 5(126) Quyển 1.
- . Lê Hồng Quân, Nghiên cứu mối quan hệ giữa các gia tốc làm giảm góc lắc của cáp nâng cần trục tháp khi quay cần trục làm cơ sở cho việc điều khiển động cơ để nâng cao tốc độ làm việc: Đề tài nghiên cứu khoa học và công nghệ cấp trường trọng điểm 2017; Mã số đề tài: 140-2017/KHXD-TĐ, Hà Nội, tháng 4/2018. Trường Đại học Xây dựng Hà Nội.

