##common.pageHeaderLogo.altText##
Tạp chí Vật liệu & Xây dựng - Bộ Xây dựng

ISSN:

Website: www.jomc.vn

Elimination of the vibrations of the hook and payload on double- pendulum crane trolley mathematical model by using input-shaping control method

Quan Le Hong , Ngoc Trinh Bich , Uy Pham Van , Hong Thieu Thi

Abstract

Fast crane trolley operations may cause large amplitude hook and payload oscillations. These are disadvantageous to safe, precise and efficient crane operations. Recently, almost crane trolley control method research has concentrated on single pendulum type dynamics. Some researchers have shown that single pendulum mode oscillations may be significantly reduced by shaping the inputs to motors of crane mechanisms properly. This paper investigates the methodology of input shaping for the anti-sway control problem of double-pendulum-type crane trolley. Input shaping is an open-loop control approach. It may implement its control action by intelligently shaping the reference commands. This method is a pre-feed technique. In practical applications, it is very difficult to resist any error without special designs, such as modeling and frequencies errors and input shaping method is that to effectively cancel motion-induced oscillations. This research starts investigating the double-pendulum type crane trolley dynamics to calculate the two oscillation frequencies and pointing out the influence of the two amplitudes of these two oscillation frequencies, this is very important input information to help us to design the convolved and simultaneous input shapers. The input shaping controllers are design to have robustness to changes in the two operating frequencies and modeling errors. Under certain conditions, trolley control problem should be integrated when the payload creates a double pendulum effect. Therefore, the control of the trolley motor of double pendulum type crane trolley dynamics model by designing one convolved input shaper and one simultaneous input shaper to be integrated with the passivity-based controller and the single – input - rule – modules - based fuzzy controller is expected to overcome the double-pendulum oscillations effectively. We conducted above integrated control methods simulation by using Matlab software with numerical physical parameters of the double-pendulum-type crane trolley system. From the simulation results have shown that the integration of the convolved input shaper with the passivity - based controller has the best control performance among others in the transport control problem of double-pendulum-type crane trolley. This means that the integration of the passivity-based controller and the convolved input shaper contributes to the improvement of the control performance.

References

  1. Abdel- Rahman EM, Nayfeh AH, Masoud ZN. Dynamics and control of cranes: a review. J Vib Control, 2003. 9(7): p.863-908.
  2. Tuan L, Janchiv A, Kim GH, Lee SG. Feedback linearization control of overhead cranes with varying cable length. In: Proceedings of International Conference on Control, Automation and Systems, Gyeonggi-do, Korea, 2011. p. 906–911.
  3. Tuan L, Kim GH, Lee SG. Partial feedback linearization control of the three- dimensional overhead crane. In: Proceedings of IEEE International Conference on Automation Science and Engineering, Seoul, Korea, 2012. p. 1198–1203.
  4. Wu XQ, He XX, Sun N, Fang YC. A novel anti-swing control method for 3-D overhead cranes. In: Proceedings of American Control Conference, Portland OR, USA, 2014. p. 2821–2826.
  5. Maschke B, Ortega R, Van der Schaft AJ. Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation. IEEE Trans Autom Control, 2000. 45(8): p.1498–1502.
  6. Karkoub MA, Zribi M. Modelling and energy based nonlinear control of crane lifters. IEE Proc Control Theory Appl, 2002. 149(3): p. 209–216.
  7. Guo W, Liu D, Yi J, Zhao D. Passivity-based-control for double-pendulum-type overhead cranes. In: Proceedings of IEEE Region 10 Annual International Conference, Chiang Mai, Thailand, 2004. p. 546–549.
  8. Collado J, Lozano R, Fantoni I. Control of convey-crane based on passivity. In: Proceedings of American Control Conference, Chicago IL, USA, 2000. p. 1260–1264.
  9. Cao LZ, Wang HW, Niu C, Wei SB. Adaptive backstepping control of crane hoisting system. In: Proceedings of IEEE International Conference on Automation and Logistics, Qingdao, China, 2007, p. 245–248.
  10. Yang JH, Yang KS. Adaptive control for 3-D overhead crane systems. In: Proceedings of American Control Conference, Minneapolis MN, USA, 2006. p. 1832–1837.
  11. Yang TW, O’Connor WJ. Wave based robust control of a crane system. In: Proceedings of 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 2006. p. 2724–2729.
  12. Uchiyama N. Robust control of rotary crane by partial-state feedback with integrator. Mechatronics, 2009. 19(8): p.1294–1302.
  13. Deng JM, Becerra VM. Application of constrained predictive control on a 3D crane system. In: Proceedings of IEEE Conference on Robotics, Automation and Mechatronics, Singapore City, Singapore, 2004. p. 583–587.
  14. Michels K, Klawonn F, Kruse R, Numberger A. Fuzzy control: Fundamentals, stability and design of fuzzy controllers. New York: Springer-Verlag, 2006.
  15. Ross IM, Fahroo F. Pseudospectral methods for optimal motion planning of differentially flat systems. IEEE Trans Autom Control, 2004. 49(8): p. 1410–1413.
  16. Zameroski D, Starr G, Wood J, Lumia R. Rapid swing-free transport of non-linear payloads using dynamic programming. J Dyn Syst Meas Control Trans ASME, 2008, 130(4), DOI:10.1115/1.2936384.
  17. Da Cruz JJ, Leonardi F. Minimum-time anti-swing motion planning of cranes using linear programming. Optimum Control Appl Meth, 2013. 34(2): p. 191–201.
  18. French L, Singhouse W, Seering W. An expert system for the design of input shapers. In: Proceedings of the 1999 IEEE International Conference on Control Applications, Kohala Coast-Island, USA, 1999. p. 713–718.
  19. Singer N, Singhose W, Kriikku E. An input shaping controller enabling cranes to move without sway. In: Proceedings of 7th Topical Meeting on Robotics and Remote Systems, Augusta, GA, 1997. p. 225–231.
  20. Sorensen K, Singhose W, Dickerson S. A controller enabling precise positioning and sway reduction in bridge and gantry cranes. Control Eng Pract, 2007. 15(7): p. 825–837.
  21. Ahres, S., Aschemann, H., Sawodny, O., and Hofer, E. P., 2000, “Crane Automation by Decoupling Control of a Double Pendulum Using Two Tran-lational Actuators,” in Proceedings of the 2000 American Control Conference, Vol. 2. p. 1052–1056.
  22. Tanaka, S., and Kouno, S., 1998, “Automatic Measurement and Control of the Attitude of Crane Lifters: Lifter-Attitude Measurement and Control,” Control Eng. Pract.,6(9), p. 1099–1107.
  23. Ortega R, Perez JA, Nicklasson PJ, Sira-Ramirez H. Passivity-based control of Euler-Lagrange systems: Mechanical, electrical and electromechanical applications. Berlin: Springer, 2013.
  24. Qian D, Tong S, Yang B, Lee S. Design of simultaneous input-shaping-based SIRMs fuzzy control for double-pendulum-type overhead cranes. Bull Pol Acad Sci-Tech Sci, 2015. 63(4): p. 887–896.
  25. Smith, O. J. M., 1958, Feedback Control Systems, McGraw-Hill, New York.
  26. Singer, N., and Seering, W., 1990, “Preshaping Command Inputs to Reduce System Vibration” J. Dyn. Syst., Meas., Control.112. p. 76–82.
  27. Kenison, M., and Singhose, W., 2002, “Concurrent Design of Input Shaping and Proportional Plus Derivative Feedback Control,” ASME J. Dyn. Syst., Meas., Control. 1243 (3): p. 398–405.
  28. Singer, N., Singhose, W., and Kriikku, E., 1997, “An Input Shaping Controller Enabling Cranes to Move Without Sway,” in ANS Seventh Topical Meeting on Robotics and Remote Systems, Augusta, GA, Vol. 1. p. 225–231.
  29. Singhose, W., Porter, L., Kenison, M., and Kriikku, E., 2000, “Effects of Hoisting on the Input Shaping Control of Gantry Cranes,” Control Eng. Pract., 8(10): p. 1159–1165.
  30. Sorensen, K., Singhose, W., and Dickerson, S., 2007, “A Controller Enabling Precise Positioning and Sway Reduction in Bridge and Gantry Cranes,” Con-trol Eng. Pract.15(7): p. 825–837.
  31. Vaughan J, Kim D, Singhose W. Control of tower cranes with double- pendulum payload dynamics. IEEE Trans Control Syst Technol, 2010. 18(6): p. 1345–1358.
  32. Pai MC. Robust input shaping control for multi-mode flexible structures using neuro-sliding mode output feedback control. J Frankl Inst – Eng Appl Math, 2012. 349(3): p. 1283–1303.
  33. Qian DW, Tong SW, Yi JQ. Adaptive control based on incremental hierarchical sliding mode for overhead crane systems. Appl Math Inform Sci, 2013. 7(4): p. 1359–1364.
  34. Chen G, Pham TT. Introduction to fuzzy sets, fuzzy logic, and fuzzy control systems. Padstow: CRC Press, 2000.
  35. Yager RR, Zadeh LA. An introduction to fuzzy logic applications in intelligent systems. Berlin: Springer, 2012.
  36. Yi J, Yubazaki N, Hirota K. Anti-swing and positioning control of overhead traveling crane. Inf Sci, 2003. 155(1): p. 19 – 42.
  37. Seki H, Ishii H, Mizumoto M. On the generalization of single input rule modules connected type fuzzy reasoning method. IEEE Trans Fuzzy Syst, 2008. 16(5): p. 1180 –1187.
  38. Liu D, Yi J, Zhao D, Wang W. Adaptive sliding mode fuzzy control for a two-dimensional overhead crane. Mechatronics, 2005. 15(5): p. 505–522.
  39. Lee LH, Huang CH, Ku SC, Yang ZH, Chang CY. Efficient visual feedback method to control a three-dimensional overhead crane. IEEE Trans Ind Electron, 2014. 61(8): p. 4073–4083.
  40. Qian DW, Tong SW, Lee S. Fuzzy-logic-based control of payloads subjected to double-pendulum motion in overhead cranes. Autom Constr, 2016, 65: p. 133–143.
  41. Liu DT, Guo WP, Yi JQ. Dynamics and GA-based stable control for a class of underactuated mechanical systems. Int J Control Autom Syst, 2008. 6(1): p. 35–43.
  42. Fantoni I, Lozano R, Spong MW. Energy based control of the pendubot. IEEE Trans Autom Control, 2000. 45(4): p. 725–729.
  43. Khalil HK (1996), Nonlinear systems. Upper Saddle River, NJ: Prentice-Hall, 1996.
  44. Spong MW, Holm JK, Lee D. Passivity-based control of bipedal locomotion. IEEE Robot Autom Mag, 2007. 14(2): p. 30–40.
  45. Ortega R, Van Der Schaft A, Maschke B, Escobar G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica, 2002, 38(4): p. 585–596.
  46. Gao H, Chen T, Chai T. Passivity and passification for networked control systems. SIAM J. Control Optim, 2007. 46(4): p. 1299–1322.
  47. Xue D, Chen Y, Atherton DP. Linear feedback control: Analysis and design with MATLAB. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2007.
  48. Dianwei Qian, Anti- sway control for Cranes, Design and implementation using Matlab.
  49. Hồ Việt Long, Dương Minh Đức, Điều khiển chống rung cho cẩu tháp, 2017, CASD 2017.
  50. Nguyễn Văn Trung, Chenglong Du, Nguyễn Trọng Quỳnh, Phạm Thị Thảo, Tổng quan chiến lược áp dụng các kỹ thuật điều khiển vòng hở để điều khiển hệ thống cầu trục, 2019, Tạp chí nghiên cứu khoa học. Trường Đại học Sao Đỏ. ISSN 1859-4190. Số 4(67). 2019.
  51. Phạm Lê Công, Điều khiển chống rung cho cẩu tháp bằng phương pháp điều khiển tiền định, Luận văn Thạc sỹ kỹ thuật, 2020, Trường Đại học Bách Khoa Hà Nội.
  52. Lê Mạnh Quý, Nguyễn Đức Minh, Dương Minh Đức, Nguyễn Tùng Lâm, Ngô Văn An, Điều khiển cầu trục kết hợp chống rung lắc và tránh vật cản, 2015, Hội nghị toàn quốc lần thứ 3 về Điều khiển và Tự động hoá - VCCA-2015.
  53. Nguyễn Văn Hùng, Nghiên cứu xây dựng mô hình thực nghiệm, khảo sát động lực học và khả năng điều khiển ổn định của vật nâng theo phương ngang khi di chuyển xe con cầu trục” 2013, Luận văn thạc sỹ kỹ thuật chuyên ngành Kỹ thuật cơ khí; Mã số: 60520103, ĐHXD 2013. Trường Đại học Xây dựng Hà Nội.
  54. Tưởng Xuân Thưởng, Dương Minh Đức, Nguyễn Tùng Lâm, Điều khiển chống rung cho cầu trục ba chiều bằng phương pháp Hybrid Shape, 2015, Hội nghị toàn quốc lần thứ 3 về Điều khiển và Tự động hoá - VCCA-2015.
  55. Cao Xuân Cường và Trần Đình Khôi Quốc, Điều khiển mô hình con lắc ngược sử dụng bộ điều khiển RQL với hai vòng phản hồi, 2018, Tạp chí điện tử và công nghệ, Đại học Đà Nẵng, 2018. 5(126) Quyển 1.
  56. Lê Hồng Quân, Nghiên cứu mối quan hệ giữa các gia tốc làm giảm góc lắc của cáp nâng cần trục tháp khi quay cần trục làm cơ sở cho việc điều khiển động cơ để nâng cao tốc độ làm việc: Đề tài nghiên cứu khoa học và công nghệ cấp trường trọng điểm 2017; Mã số đề tài: 140-2017/KHXD-TĐ, Hà Nội, tháng 4/2018. Trường Đại học Xây dựng Hà Nội.

Most read articles by the same author(s)

1 2 > >>